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Abstract. This work presents a formulation for elastic-viscoplastic analysis of plate bending by the Boundary 

Element Method (BEM). It is employed Reissner’s theory, in which transverse shear strains are considered and 

so, it holds for thin and thick plates. Basic formulation of Reissner's plate bending theory is presented, with the 

consideration of physical nonlinearity. The related integral equations are shown for displacements at internal and 

boundary points and also for moments and shear resultants at internal points. The theory for considering 

viscoplasticity is presented, as well as the procedures for the solution of these equations by the BEM. This process 

offers an alternative method of solution for elasto-plastic problems, when steady-state condition is reached. For 

the numerical implementation, quadratic boundary elements of linear geometry and constant internal cells, also of 

linear geometry, are employed. These cells are only necessary where the existence of inelastic strains is expected. 

Numerical examples are presented and the obtained results are compared with solutions found in literature. 
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1  Introduction 

The Boundary Element Method (BEM) has been used to solve several kinds of nonlinear engineering 

problems, however there are still few works in literature considering viscoplascity related to plate bending.  

In this context, Morjaria and Mukherjee [1] developed a formulation for plate bending inelastic analysis 

considering a viscoplastic model for Kirchhoff’s plate theory, in which simply supported and clamped plates were 

analyzed considering the transverse loading uniformly distributed and varying linearly with time. Providakis [2] 

used a methodology that combinates BEM and Finite Element Method (FEM) to obtain the integral formulation 

to analyze plates with arbitrary boundary conditions to general lateral loading history. The BEM in its direct form 

with the nonhomogeneous biharmonic equation for time-dependent inelastic analysis it was used and the plate 

material is modelled as elastic-viscoplastic. These mentioned works are based on classical plate bending theory, 

and therefore, are only applied to thin plates. 

The present work presents an elastic-viscoplastic formulation for plate bending analysis using the boundary 

element method, considering the plate bending theory of Reissner [3], which is applied for both thick and thin 

plates. A procedure similar to that adopted by Telles and Brebbia [4] and Telles [5] for two-dimensional and three-

dimensional elastic-viscoplastic problems was considered. Perzyna’s approach given in Ref. [6] is considered and 

can also be used to simulate a pure elastoplastic problem. A simple Euler one step procedure is used to obtain the 

time dependent solution. The criteria of von Mises and of Tresca are adopted. 

For the numerical implementation, quadratic boundary elements of linear geometry and constant internal 

cells, also of linear geometry, are employed. These cells are only necessary where the existence of inelastic strains 

is expected. 

The cartesian tensor notation is used throughout the text, with Greek indices varying from 1 to 2 and Latin 

ones from 1 to 3. In addition, the dot over some variables indicates time derivative. 
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2  Governing equations for nonlinear material Reissner’s plates 

Let h be a constant thickness plate with homogeneous, isotropic and nonlinear material, subject to a transverse 

load q per unit area. Cartesian axis 𝑥𝛼  is considered in the plate middle surface and 𝑥3 in the transverse direction. 

The transverse displacement rate 𝑢̇3 and rotation rates 𝑢̇𝛼 are considered in this plate analysis. 

Admitting that the plate has inelastic strains only due to bending, the total bending strain rate 𝜒̇𝛼𝛽 and the 

total shear strain rate 𝜓̇𝛼 are given by the following expressions: 

 𝜒̇𝛼𝛽 =
1

2
(𝑢̇𝛼,𝛽 + 𝑢̇𝛽,𝛼) = 𝜒̇𝛼𝛽

𝑒 + 𝜒̇𝛼𝛽
𝑎   (1) 

 𝜓̇𝛼 = 𝑢̇𝛼 + 𝑢̇3,𝛼 = 𝜓̇𝛼
𝑒   (2) 

where 𝜒̇𝛼𝛽
𝑒  and 𝜓̇𝛼

𝑒 are elastic parcels and 𝜒̇𝛼𝛽
𝑎  is the inelastic parcel, which can be due to viscoplasticity, 𝜒̇𝛼𝛽

p
. 

The expressions for moment rates and transverse shear force rates are given in the following form: 

 𝑀̇𝛼𝛽 =
𝐷(1−𝜈)

2
[2𝜒̇𝛼𝛽 +

2𝜈

1−𝜈
𝜒̇𝛾𝛾𝛿𝛼𝛽] +

𝜈𝑞̇

(1−𝜈)𝜆2 𝛿𝛼𝛽 − 𝑀̇𝛼𝛽
𝑎  (3) 

 𝑄̇𝛼 =
𝐷(1−𝜈)𝜆2

2
𝜓̇𝛼      (4) 

in which  𝛿𝛼𝛽 represents  the Kronecker delta, 𝜈 is Poisson’s ratio, 𝜆 = √10/ℎ is the characteristic constant of 

Reissner’s equations and 𝐷 = 𝐸ℎ3 12(1 − 𝜈2)⁄  is the plate bending rigidity, with E being Young’s modulus. The 

term 𝑀̇𝛼𝛽
𝑎  expresses the components of inelastic moment rates, defined in initial stress formulation as: 

 𝑀̇𝛼𝛽
𝑎 =

𝐷(1−𝜈)

2
[2𝜒̇𝛼𝛽

𝑎 +
2𝜈

1−𝜈
𝜒̇𝛾𝛾

𝑎 𝛿𝛼𝛽] (5) 

Generalized traction rates 𝑝̇𝛼 and 𝑝̇3 are expressed by: 

 𝑝̇𝛼 = 𝑀̇𝛼𝛽𝑛𝛽  (6) 

 𝑝̇3 = 𝑄̇𝛼𝑛𝛽 (7) 

where 𝑛𝛽 represents the direction cosines of the outward normal to the boundary. 

3  Elastic-viscoplastic constitutive equations  

Considering Perzynas’s model (Ref. [6]) and using a procedure similar to that employed by Telles and 

Brebbia [4] and Telles [5] for two- and three-dimensional problems, the constitutive equations for plate bending 

by Reissner’s theory with the consideration of an elastic-viscoplastic model are obtained. 

It is considered a yield function, 𝐹,  that does not differ from the corresponding yield condition for the inviscid 

theory of plasticity. expressed in terms of moments 𝑀𝛼𝛽 and a hardening parameter 𝜅, as 

 𝐹(𝑀𝛼𝛽 , 𝜅) = 𝑓(𝑀𝛼𝛽) − 𝛹(𝜅) = 𝑀𝑒 − 𝑀0 = 0  (8) 

in which 𝑀𝑒 is the equivalent moment and can be calculated by different criteria presented in literature. In the 

present work, von Mises’ and Tresca’s yield criteria are adopted.  

When the equivalent moment 𝑀𝑒 reaches the uniaxial yield moment 𝑀0, the entire cross section plastifies. 

So, considering that 𝜎𝑦 is the uniaxial yield stress, one has the related initial uniaxial yield moment 𝑀𝑦 = 𝜎𝑦ℎ2 4⁄ . 

For a more general case, where linear hardening is considered, the uniaxial yield moment can be written as: 

 𝑀0 = 𝑀𝑦 + 𝐻′𝜒𝑒
𝑝
  (9) 

in which 𝐻′ = 𝑑𝑀 𝑑𝜒𝑒
𝑝⁄  represents a constant slope of the strain hardening portion of the stress-strain curve after 

the removal of the elastic strain component and 𝜒𝑒
𝑝
 is the current effective viscoplastic strain. 

An increase of equivalent viscoplastic strain rate 𝜒̇𝑒
𝑝

  causes an increase in the plastic strain energy, so: 

 𝑀𝑒𝜒̇𝑒
𝑝

= 𝑀𝛼𝛽𝜒̇𝛼𝛽
𝑝

= 𝜅̇  (10) 

Through the normality principle of Perzyna [6], the viscoplastic strain rate can be given by: 

 𝜒̇𝛼𝛽
𝑝

= 𝛾 ⟨𝛷 (
𝐹

𝛹
)⟩

𝜕𝐹

𝜕𝑀𝛼𝛽
   (11) 
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where 𝛾 is the fluidity parameter which can be function of time, temperature, etc and 

 〈𝛷 (
𝐹

𝛹
)〉 {

0   for 𝐹 ≤ 0                 Elatic behavior

𝛷 (
𝐹

𝛹
)  for 𝐹 > 0       Viscoplastic behavior

 (12) 

Perzyna [6] proposes different types of 𝛷 and, in the present work, it is considered the linear form: 

  𝛷 (
𝐹

𝛹
) = (

𝐹

𝛹
)       (13) 

Equation (11) can also be written as follows: 

  𝜒̇𝛼𝛽
𝑝

= 𝛾 ⟨𝛷 (
𝐹

𝛹
)⟩

𝜕𝑓

𝜕𝑀𝛼𝛽
 (14) 

By multiplying both sides of eq. (14) by 𝑀𝛼𝛽, considering that 𝑓(𝑀𝛼𝛽) is homogeneous of degree one 

(requirement satisfied by the adopted yield criteria) and applying the Euler theorem, one can obtain: 

 𝑀𝛼𝛽𝜒̇𝛼𝛽
𝑝

= 𝛾 ⟨𝛷 (
𝐹

𝛹
)⟩ 𝑓(𝑀𝛼𝛽)  (15) 

From eq. (15) and using eqs. (8) and (10), it can be found that equivalent viscoplastic strain rate is: 

 𝜒̇𝑒
𝑝

= 𝛾 ⟨𝛷 (
𝐹

𝛹
)⟩ (16) 

In the present work, the problem is solved using the BEM by considering an initial stress technique in a 

procedure analogous to that used in Telles and Brebbia [4] and Telles [5] for two- and three-dimensional problems. 

Reorganizing the terms of eq. (16), and considering a situation in which 𝐹 > 0, one has: 

 𝑓(𝑀𝛼𝛽) = 𝛹(𝜅) [1 + 𝛷−1 (
𝜒̇𝑒

𝑝

𝛾
)] (17) 

Equation (17), when compared to the eq. (8), shows the explicit dependence of the yielding surface over the 

equivalent plastic strain rate. 

It can also be demonstrated that the equivalent total strain rate (𝜒̇𝑒) is equal to the equivalent elastic strain 

rate (𝜒̇𝑒
𝑒) plus the equivalent plastic strain rate (𝜒̇𝑒

𝑝
) by considering the following equation 

 𝜒̇𝑒 = 𝜒̇𝑒
𝑒 + 𝜒̇𝑒

𝑝 (18) 

where 𝜒̇𝑒
𝑒 = 𝑀̇𝑒 𝐷⁄ . Then, one can write 

 𝜒̇𝑒 =
𝑀̇𝑒

𝐷
+ 𝜒̇𝑒

𝑝
  (19) 

and the substitution of eq. (19) into eq. (17) leads to: 

 𝑓(𝑀𝛼𝛽) = 𝛹(𝑘) [1 + 𝛷−1 (
𝜒̇𝑒−𝑀̇𝑒 𝐷⁄

𝛾
)]  (20) 

This demonstrates the explicit dependence of 𝑓(𝑀𝛼𝛽) over the rate of induced strains/stresses. 

Considering eq. (12), the initial moment rates can be evaluated by: 

 𝑀̇𝛼𝛽
𝑃 = 𝛾⟨𝛷⟩𝑑𝛼𝛽  (21) 

in which: 

 𝑑𝛼𝛽 = 𝐶𝛼𝛽𝛾𝜃
𝜕𝑓

𝜕𝑀𝛾𝜃
   (22) 

where 𝐶𝛼𝛽𝛾𝜃 stands for the components of the fourth order isotropic tensor of elastic constants. 

4  Integral equations for nonlinear material Reissner’s plates 

Integral equations for the generalized displacements at a point ξ, called source point, of the domain Ω can be 

obtained from a Weighted Residual Method. An equation valid for boundary points can be obtained taking the 

limits of the integrals of the resulting equation as point ξ tends to the boundary Γ. Karam and Telles [7-8] present 
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the resulting equation applied to elastoplastic problems. 

Considering a general nonlinear material form of these integral equations, which allows the application to 

time dependent problems, in order to perform elastic-viscoplastic analysis, these equations can be written in the 

following form: 

 𝑐𝑖𝑗(𝜉)𝑢̇𝑗(𝜉) = ∫ 𝑢𝑖𝑗
∗ (𝜉, 𝑥)𝑝̇𝑗(𝑥)𝑑𝛤(𝑥)

𝛤
− ∫ 𝑝𝑖𝑗

∗ (𝜉, 𝑥)𝑢̇𝑗(𝑥)𝑑𝛤(𝑥)
𝛤

   (23) 

  + ∫ [𝑢𝑖3
∗ (𝜉, 𝑥) −

𝜈

(1 − 𝜈)𝜆2
𝑢𝑖𝛼,𝛼

∗ (𝜉, 𝑥)] 𝑞̇(𝑥)𝑑𝛺(𝑥)
𝛺

+ ∫ 𝜒𝛼𝛽𝑖
∗

𝛺

(𝜉, 𝑥)𝑀̇𝛼𝛽
𝑎 (𝑥)𝑑𝛺(𝑥) 

Equation (23) holds for internal points with 𝐶𝑖𝑗 = 𝛿𝑖𝑗, and for boundary points, with 𝐶𝑖𝑗 = 𝛿𝑖𝑗/2, at smooth 

boundaries. In that equation, 𝑥 represents the field point, 𝑢𝑖𝑗
∗ , 𝑝𝑖𝑗

∗  and 𝜒𝛼𝛽𝑖
∗  are displacement, traction and bending 

strain tensors related to the fundamental solution to the problem. The second integral is in the Cauchy principal 

value sense. 

Admitting a constant distributed load,  𝑞̇(𝑥) = 𝑞̇, and transforming the domain integral related to this load 

into a boundary integral, eq. (23) become: 

 𝑐𝑖𝑗(𝜉)𝑢̇𝑗(𝜉) = ∫ 𝑢𝑖𝑗
∗ (𝜉, 𝑥)𝑝̇𝑗(𝑥)𝑑𝛤(𝑥)

𝛤
− ∫ 𝑝𝑖𝑗

∗ (𝜉, 𝑥)𝑢̇𝑗(𝑥)𝑑𝛤(𝑥)
𝛤

 (24) 

  +𝑞̇ ∫ [𝜈𝑖,𝛼
∗ (𝜉, 𝑥) −

𝜈

(1 − 𝜈)𝜆2
𝑢𝑖𝛼

∗ (𝜉, 𝑥)] 𝑛𝛼(𝑥)𝑑𝛤(𝑥)
𝛤

+ ∫ 𝜒𝛼𝛽𝑖
∗

𝛺

(𝜉, 𝑥)𝑀̇𝛼𝛽
𝑎 (𝑥)𝑑𝛺(𝑥) 

Expressions for 𝑢𝑖𝑗
∗ , 𝑝𝑖𝑗

∗  and νi
∗ can be obtained from Van der Weeën [9] and Karam and Telles [10] and 

expressions for the tensor 𝜒𝛼𝛽𝑖
∗  are presented in Karam and Telles [7-8]. 

5  Integral equations for moments and shear forces at internal points 

Moment rates and shear resultant rates at internal points can be evaluated by replacing eq. (24) with 𝐶𝑖𝑗 = 𝛿𝑖𝑗 

and its derivatives with reference to the coordinates of point ξ into eqs. (1) and (2). Substituting the resulting 

expressions in eqs. (3) and (4) and after some procedures, the following equations (Karam and Telles[8]) arises: 

         𝑀̇𝛼𝛽 = ∫ 𝑢𝛼𝛽𝑘
∗ 𝑝̇𝑘𝑑𝛤

𝛤
− ∫ 𝑝𝛼𝛽𝑘

∗ 𝑢̇𝑘𝑑𝛤
𝛤

+ q̇ ∫ wαβ
∗ dΓ

Γ
+ ∫ χαβγθ

∗ Ṁγθ
a dΩ

Ω
   (25) 

     +
𝜈𝑞̇

(1 − 𝜈)𝜆2
𝛿𝛼𝛽 −

1

8
[2(1 + 𝜈)𝑀̇𝛼𝛽

𝑎 + (1 − 3𝜈)𝛿𝛼𝛽𝑀̇𝜃𝜃
𝑎 ] 

 𝑄̇𝛽 = ∫ 𝑢3𝛽𝑘
∗ 𝑝̇𝑘𝑑𝛤

𝛤
− ∫ 𝑝3𝛽𝑘

∗ 𝑢̇𝑘𝑑𝛤
𝛤

+ 𝑞̇ ∫ 𝑤3𝛽
∗ 𝑑𝛤

𝛤
+ ∫ 𝜒3𝛽𝛾𝜃

∗ 𝑀̇𝛾𝜃
𝑎 𝑑𝛺

𝛺
 (26) 

The last integral in eq. (25) and eq. (26) should be calculated in the Cauchy principal value sense. Expressions 

for the tensors 𝑢𝑖𝛽𝑘
∗ , 𝑝𝑖𝛽𝑘

∗  and 𝑤𝑖𝛽
∗  can be seen in Karam and Telles [10] and expressions for 𝜒𝑖𝛽𝛾𝜃

∗  are presented 

in Karam and Telles [7-8]. 

6  Numerical implementation 

The numerical implementation was performing in this work by employing continuous and discontinuous 

quadratic boundary elements and constant triangular internal cells, both with linear geometry. 

The following system of equations can be written by applying eq. (24), in discretized form, to all nodal points: 

 𝑯𝑼̇ = 𝑮𝑷̇ + 𝑩̇ + 𝑻𝑴̇𝑎  (27) 

where 𝑼̇ is the nodal displacement rate vector, 𝑷̇ is the nodal traction rate vector, 𝑩̇ is the vector that contains the 

influence of the distributed load rate, 𝑴̇𝒂 is the vector containing the plastic moment rates at the cell points, 𝑯 and 

𝑮 are square matrices generated from the boundary integrals and 𝑻 is the matrix formed from the internal cell 

integrals. 

Applying eqs. (25) and (26) in discretized form to all internal cell nodal points, leads to the equations for 

moment and shear force rates of the form, respectively: 

 𝑴̇ = 𝑮′𝑷̇ − 𝑯′𝑼̇ + (𝑾̇′ + 𝑽̇′) + (𝑻′ + 𝑬′)𝑴̇𝑎  (28) 

 𝑸̇ = 𝑮′′𝑷̇ − 𝑯′′𝑼̇ + 𝑾̇′′ + 𝑻′′𝑴̇𝑎  (29) 
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where matrices 𝑮′, 𝑮′′, 𝑯′ and 𝑯′′ contain the boundary integrals related to the fundamental solution, vectors 𝑾̇′ 
and 𝑾̇′′ contain the influence of the distributed load rate,  𝑽̇′  contains the free term related to the transverse load, 

𝑻′ and 𝑻′′ contain the domain integrals that multiply the plastic moments and 𝑬′ represents the free term related 

to the plastic moments. 

Considering the boundary conditions, in terms of displacements and tractions, in eq. (27), and reording it, 

one can obtain: 

 𝑨𝒚̇ = 𝒇̇ + 𝑻𝑴̇𝑎 ̇   (30) 

The pre-multiplication of eq. (30) by 𝑨−𝟏 leads to: 

 𝒚̇ = 𝑹𝑴̇𝑎 + 𝒎̇  (31) 

Then, considering the boundary conditions also in eqs. (28) and (29) and substituting eq. (31) in the resulting 

equations, one obtains, respectively: 

 𝑴̇ = 𝑺′𝑴̇𝑎 + 𝒏̇′  (32) 

 𝑸̇ = 𝑺′′𝑴̇𝑎 + 𝒏̇′′  (33) 

In these equations, 𝐲̇ is the vector of unknowns, 𝒇̇, 𝒇̇′ and 𝒇̇′′ are vectors that contain the prescribed values, 

including the influence of the transverse load, 𝑹 = 𝑨−𝟏𝑻, 𝑺′ = 𝑻 − 𝑨′𝑹 and 𝑺′′ = 𝑻′′ − 𝑨′′𝑹, with 𝐓 = 𝐓′ + 𝐄′.  
In addition, the vectors 𝒎̇, 𝒏̇′ and 𝒏̇′′ represent the elastic solution to the problem and are expressed, respectively, 

by 𝒎̇ = 𝑨−𝟏𝒇,̇ 𝒏̇′ = 𝒇̇′ − 𝑨′𝒎̇ and 𝒏̇′′ = 𝒇̇′′ − 𝑨′′𝒎̇. 

7  Solution technique for the elastic-viscoplastic problem 

In order to start the incremental process, the maximum equivalent moment calculated at the cell points, 𝑀𝑚𝑎𝑥
𝑒 , 

is reduced to the initial yield moment 𝑀0, and so, the following initial the load factor is set: 

 𝜆0 =
𝑀0

𝑀𝑚𝑎𝑥
𝑒   (34) 

If  𝜆0 > 1, there will be no viscoplastic analysis and the process will be terminated. Otherwise, if  𝜆0 ≤ 1, 

the viscoplastic analysis will be performed for a specific load value. Thus, it will be considered only one step load, 

or through an incremental load process considering the initial load factor 𝜆0. Subsequent values of the load factor 

for the incremental process are calculated by the following recursive equation: 

 𝜆𝑖 = 𝜆𝑖−1 + 𝛥𝜆𝑖  (35) 

where Δ𝜆𝑖 = 𝛽𝑖𝜆0 is the increment, defined as a given percentage 𝛽𝑖 in terms of the load at the first yield. 

A simple Euler one-step process has been adopted. A load factor 𝜆𝑖(𝑡) is considered to be a known function 

of time and, consequently, eqs. (31), (32) and (33) can be integrated on time and become 

 𝒚 = 𝑹𝑴𝑝 + 𝜆𝑖(𝑡)𝒎   (36) 

 𝑴 = 𝑺′𝑴𝑝 + 𝜆𝑖(𝑡)𝒏 (37) 

 𝑸 = 𝑺′′𝑴𝑝 + 𝜆𝑖(𝑡)𝒏′′ (38) 

where, vectors m, n’ and n’’ are the elastic solution at time 𝑡 = 0. Equation (37) is applied after each discrete time 

step (𝛥 𝑡 = 𝑡𝑘+1 − 𝑡𝑘 ) with the value of initial moments evaluated in the internal cell points, located at the 

geometric center of the cells, by: 

 𝑀𝑘+1
𝛼𝛽
𝑝

= 𝑀𝑘
𝛼𝛽
𝑝

+ 𝛥 𝑡𝛾⟨ 𝛷𝑘 ⟩
𝑘

𝑑𝛼𝛽  (39) 

The load factor 𝜆𝑖(𝑡) is left constant until the steady state condition is reached at the end of each time step. 

The convergence is monitored in each time step and the values 𝛥 𝑡𝛾𝜒
.

𝑒
𝑝
 or 𝑀𝑘+1

𝑒 = 𝑀𝑘
𝑒 become less than 

tolerance. So, when the steady state conditions are reached, the process is stopped, or a new load factor is applied. 

The proper choice of the size of time increments is of great importance for the success of this process and are 

determined as presented in Borges and Karam [11]. 
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8  Application 

Consider a simply supported circular plate with radius 𝑎 = 10 𝑖𝑛 (254 mm) and thickness ℎ = 1 𝑖𝑛 (25.4 

mm), subjected to a uniformly distributed load, with the properties: 𝜐 = 0.24, 𝐸 = 10,000 𝑘𝑠𝑖 (6.867x104 MPa) 

and  𝜎𝑦 = 16 𝑘𝑠. (109.872 MPa). The plate is ideally viscoplastic (𝐻′ = 0), the fluidity parameter is 𝛾 = 0.001 

and the parameters for choosing the time increment are 𝜂 = 0.08 and 𝜂0 = 1.5. The linear form for the function 

𝛷(𝐹/Ψ) is used and von Mises’ yield criterion is adopted.  

Due to the symmetry of the problem, only a quarter of the circular plate was discretized. Two meshes were 

used and are the same to that employed by Karam and Telles [8] for the analysis with classical theory of plasticity. 

The first mesh has 20 boundary elements and 50 internal cells and the second one has 36 boundary elements and 

162 internal cells. 

This plate was also analyzed by Armen Jr. et al. [12], using the FEM. Hopkins and Wang [13] performed a 

limit analysis for the same problem. Armen Jr. et al. [12] obtained collapse load of 𝜌 = 6.50 and Hopkins and 

Wang [13] found limit load 𝜌 = 6.51. Karam and Telles [8] found values that converge to 𝜌 = 6.62 for mesh 1 

while in the present work the obtained value was 𝜌 = 6.52. In the present work, it was found 𝜌 = 6.39 for mesh 

2 while Karam and Telles [8] presented values converging to 𝜌 = 6.49. 

Fig. 1 shows the load-deflection curves for the central point of the plate for an incremental load process and 

only one step load, considering 𝜌 = 6.52 . The results found in the present work are in good accordance with the 

results presented in Refs. [8,12,13]. 

Fig.2 presents the plate deflection profile for time 𝑡 = 0 (elastic solution) and time 𝑡 = ∞ when convergence 

is reached, for the constant load of 𝜌 = 6.52, and also the profile found with the use of an incremental loading 

process with 𝛽 = 1%. It is possible to verify that the displacements tend to be slightly larger when the load is 

applied in only one step. 

Fig. 3 shows redistribution of effective moments with time, considering the load ρ = 6.52 applied in only one 

step and the parameter 𝜂 = 0.03. While the point called p, located in the center of gravity of the corresponding 

cell, is already yielded, the point called e, also in the center of gravity of the respective cell, remains elastic. 

 

 
Figure 1. Load-deflection curves for the circular plate. 

 

 
Figure 2. Deflection profiles for one step load  𝜌 = 6,52, for 𝑡 = 0 and 𝑡 = ∞, and for incremental load process. 
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Figure 3. Redistribution of 𝑀𝑒 with time for a viscoplastic point (Point p) and elastic point (Point e) 

9  Conclusions 

In this work, a formulation was presented for elastic-viscoplastic analysis of Reissner’s plates, using BEM 

with an initial stress process. It was considered the constitutive equations due to Perzyna and the yield criteria of 

von Mises and Tresca. It was developed a computer program for the presented formulation and the discretization 

of the plates was performed using quadratic boundary elements and constant triangular internal cells. The 

formulation presents an alternative for elastoplastic solution if the load is applied in small increments and the 

stationary conditions are reached for each load increment. An application was presented and the results show 

consistency and good accordance when compared with FEM, BEM and analytical solutions. 
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