
   
 

CILAMCE-2022 
Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu, Brazil, November 21-25, 2022 

COMPUTING DEFLECTIONS OF TOPOLOGICALLY 

OPTIMIZED BEAMS 

Joanna Paulla Alves de Castro1, Leonardo Henrique Borges de Oliveira2, Matheus Fernandes de Araújo Silva2, 

João Carlos Arantes Costa Júnior3, Paulo Henrique Araújo Bezerra2 

1Federal Rural University of the Semi-Arid 

Sítio Esperança II, CEP: 59.780-000, Caraúbas/RN, Brazil.  

joanna.castro@alunos.ufersa.edu.br 
2Dept. of Engineering and Technology, Federal Rural University of the Semi-Arid 

 Bairro São Geraldo, CEP: 59.900-000, Pau dos Ferros/RN, Brazil.  

leonardo.oliveira@ufersa.edu.br, matheus.silva@ufersa.edu.br, paulo.bezerra@ufersa.edu.br,  
3 Dept. of Mechanical Engineering, Federal University of Rio Grande do Norte 

Av. Senador Salgado Filho, no 3000, CEP: 59.078-900, Natal/RN, Brazil.  

arantes_jr@yahoo.com.br 

  

Abstract. In civil engineering, computing deflections is a fundamental step in the structural design process. 

However, most structural optimization codes do not directly compute or evaluate displacements in the resulting 

optimized structures. In that context, this work presents the basis of an approach to compute and analyze 

deflections (vertical displacements) in optimized beams. Using Matlab®, we implemented an extension to the 

FEM-based 99 Line Topology Optimization Code (Sigmund, 2001), which is able to compute deflections and plot 

deformed shapes of optimized structures, allowing users to analyze deformation during the design process. We 

also compared maximum deflections of optimized versus nonoptimized beams. According to results, for constant 

boundary conditions, optimized beams present smaller maximum deflections.  
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1  Introduction 

Structural designers must satisfy several constraints such as time and material saving and efficiency. Therefore, 

optimization methods are employed to assure quality and functionality, according to Vitorino [5]. The 99 line code 

written in Matlab® by Sigmund [4], aims at solving the beam optimization problem – for different structures and 

several types of loads – by minimizing compliance, employing the Solid Isotropic Material with Penalization 

(SIMP) approach; applying a FEM-based formulation, a given design domain is topologically optimized. However, 

no displacements at the optimized resulting beam are directly computed or analyzed. On the other hand, 

determining the maximum vertical displacement (deflection) is mandatory when designing beams, since limiting 

values are stablished in design codes.  

In that context, we developed an extension to the FEM-based 99 Line Topology Optimization Code by Sigmund 

[4], to compute deflections and plot the deformed shape of the optimized structures. Thus, this works presents the 

deformed shape for optimized beams and the comparison of deflections of optimized versus nonoptimized beams 

with equal material, geometry and boundary conditions.  
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2  Code extension 

2.1 Reference beams and simulation scheme 

The code extension computes maximum deflections for both reference beams (máx) and optimized beams (máx); 

it also plots their deformed shapes. Reference beams are nonoptimized, rectangular section structural members, 

with the same material, geometry, volume fraction and boundary conditions of the optimized beams designed by 

the original 99 Line Code. To verify displacement results of the reference beam numerical model, analytical elastic 

curve equations were employed.  In the example we present in this paper, structures were simulated to compare 

maximum deflections máx and máx for a given volume fraction range. Figure 1 illustrates the whole simulation 

scheme. 

  

Figure 1. Simulation scheme 

2.2 Post-processing 

For post-processing, the code extension plots the deformed shape of the beams using Matlab® and outputs a file 

compatible with Paraview®, as shown in Figure 2 for an optimized beam.  

 

a) 

 

b) 

 

Figure 2. – Optimized beam’s deformed shape post-processing: a)  Matlab® plot; b) Paraview© plot  



Castro, Oliveira, Silva, Costa Júnior, Bezerra 

CILAMCE-2022 
Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu, Brazil, November 21-25, 2022 

 

2.3 Illustration of a volume fraction range  

An illustration of a volume fraction range for a cantilever beam is shown in Figure 3. 

 

Figure 3. – Volume fraction variation for a cantilever beam  
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3  Results and discussion 

In the simulations of both reference and optimized beams, we adopted the same rectangular design domain - with 

a ratio of 12 between height and length. The adopted input also included: point force load at the center F = 105 kN; 

degrees of freedom equivalent to a simply supported beam; Elastic Modulus E = 2x106 kN/m2; Poisson’s ratio = 

0.28; volume fraction ranging from f = 0,3 to f = 0,9. For the optimized beam, we also adopted minimum radius r 

= 1.5 and penalty p = 3.  

Results are shown in Table 1, from which we can notice that, for a volume fraction of 30%, máx is about 12 times 

smaller than máx. Besides, as the volume fraction increases, máx and máx tend to reach the same magnitude (they 

are theoretically identical for a 100% volume fraction). 

Table 1 First simulation procedure results 

f (%) máx (m) máx máx /máx  

30 2,47e-03 2,05e-04 12,08 

50 3,37e-04 8,21e-05 4,11 

70 1,02e-04 5,28e-05 1,94 

90 6,50e-05 4,50e-05 1,45 

Deformed shape and deflection magnitudes of reference and optimized beams for a volume fraction f = 30% are 

shown in Figure 4  

a) 

 

b) 

 

Figure 4. – Deformed shape and deflection color map for  f = 30%.: a) reference beam; b) optimized beam  
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4  Conclusions 

We found that, in relation to reference beams, optimized beams present smaller maximum deflections when we 

admit equal material, geometry and boundary conditions. We also found that differences in maximum deflection 

magnitudes are inversely proportional to the volume fraction. Finally, computing maximum deflection and plotting 

the deformed shape of optimized beams helps structural designers to improve decision-making and save material, 

since it is fundamental to analyze deformations of the resulting structures during the design process.  

5  References 

 
[1] BENDSØE, Martin. (1989). Bendsøe, M.P.: “Optimal Shape Design as a Material Distribution Problem. Structural 

Optimization” 1, 193-202. Structural Optimization. 1. 193-202. 10.1007/BF01650949. 

[2] R. M. MOSMANN. Otimização topológica de estruturas contínuas submetidas a restrições de flexibilidade, volume e 

frequência natural. Master’s Dissertation, Universidade Federal do Rio Grande do Sul, 2003. 

 

[3] L. F. PALMA. Estudos complementares sobre otimização topológica multimaterial utilizando interpolação SIMP 

ordenada. Master’s Dissertation, Universidade Federal de Santa Catarina, 2018. 

[4] O. SIGMUND, “A 99 line topology optimization code written in Matlab”. Structural and Multidisciplinary Optimization, 

vol.  21, pp. 120–127, 2001.  

[5] A. VITORINO. Otimização topológica de estruturas tridimensionais. Master’s Dissertation, Universidade Estadual de 

Campinas, 2019. 

[6] R. C. HIBBELER, Mechanics of Materials. Pearson Education, 2016  

[7] M. P. BENDSOE, O. SIGMUND, Topology Optimization: Theory, Methods and Applications. Springer Science & Business 

Media, 2013. 


