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Abstract. This work addresses the development of 3D optimal trusses using the topology optimization method.
The aim is to minimize the total volume with local stress and displacement constraints as well as buckling con-
straints. The augmented Lagrangian method is also implemented to solve the optimization problem. The formu-
lation and the implementation are assesed by means of some benchmark problems found in the literature. Results
also show the importance of properly selecting the material parametrization.
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1 Introduction

In engineering, a structural design must satisfy the design requirements. Thus, the structure is able to fulfill a
set of functions during its useful life. In this environment, structural optimization is highlighted, aiming at struc-
tural reliability and economic viability. In deterministic structural optimization problems, the objective function is
usually the volume or weight of the structure, and constraints are stress and displacement, Verzenhassi [1].

In the midst of structural optimization, one can mention the topology optimization. According Bendsøe and
Sigmund [2], the purpose of topology optimization is to find the optimal lay-out of a structure within a specified
region. For that, the only known quantities in the problem are the applied loads, the possible support conditions
and some additional design constraints.The optimization of truss structures has been part of the study of several
authors over the years, since the pioneering work of Dorn et al. [3], Fleron [4], to current works such as Guilherme
[5], where buckling and flexibility constraints were adopted.

For problems involving stress constraints, qp relaxation is commonly used. On the report of Bruggi [6], stress
constraints imposition has always been one of the more challenging topics in structural optimization. The formula-
tion from this kind of problem may end up producing feasible sets of equations that are, in general, nonconvex and
may include a degenerate subdomain with zero measure. An efficient way manage with the stress singularity prob-
lem is to act on the stress constraints, relaxing the degenerate zones. Other characteristics of topology optimization
are the high number of elements, and the nonlinearity of constraints.

Local buckling constraints were addressed in works such as Zhou [7] and Rozvany [8]. For truss optimization
problems, some inconveniences are still found. In the present work, local buckling is given by Euler’s critical load,
where it is defined based on the length of the bars. The topology optimization may remove some bars of the ground
structure. This effect can result in the algorithm miscalculating the true Euler buckling load, resulting in a poor
optimum solution, Torii et al. [9]. Therefore, a relaxation was used for the buckling constraints.

Thus, topological optimization is used in order to minimize the volume of three-dimensional truss structures,
subject to local stress, displacement and buckling constraints. The Finite Element Method (FEM) is used for the
discretization of the problem. Furthermore, the optimization is written in terms of the Augmented Lagrangian
method, grouping the objective function and the local stress, displacement and buckling constraints into a single
functional. Algorithm validation will be performed by analyzing two classical optimization problems.

2 Topology optimization

Topology optimization allows the simultaneous determination of topology and shape of a structure contained
in a given region of space, the Design Domain. The optimization problem is usually composed of three elements:
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objective function, design variables and functional constraints. The effective Young’s module in each element is
assumed as Ej = xp

jE
0
j , where xj is the design variable associated to element j and E0

j is the base value for the
element. The problem is set as

P



Min
x V (x) =

ne∑
j=1

xjAjLjHj(x)

S.t. K(x)U(x) = F

gσj (x) =
σeqj

(x)

sσσ − 1 ≤ 0 j = 1..ne

gbj(x) = −Ajσj(x)s
b

Pj(x)
− 1 ≤ 0 j = 1..ne

guj (x) =
(

uj(x)
uj

)2

− 1 ≤ 0 j = 1..nrd

xi ≤ xi ≤ xi i = 1..ne

, (1)

where ne is the number of elements, nrd is the number of displacement constraints, gσj are the stress constraints,
gbj are the buckling constraints, guj the displacement constraints and x and x are the side constraints. Aj is the
area of element j, Lj is the length of element j. Equilibrium equation K(x)U(x) = F is solved by using the
Finite Element Method, where K is the stiffness matrix, U is the displacement vector and F is the force vector.
Furthermore, σeqj is the equivalent stress, sσ is the safety factor with respect to stress, σ is the yield stress, σj is
the normal stress, sσ is the safety factor for buckling, Pj is the Euler’s critical load and uj is the upper limit for the
displacement constraint.

Function Hj(x) = 1 − e−bxj + xje
−b is a Heaviside like function used to avoid intermediate results (bars

with intermediate values of x) in the final design, where b is a "sharpness" parameter.

2.1 Stress relaxation

Normal stress at element j is σj(x) = Ψj(x)σ
0
j where Ψj is the relaxation proposed by Bruggi [6], where

σ0
j = E0

jBjRjHjU (2)

is the nominal stress, Bj is the displacement strain matrix, Rj is the rotation matrix and Hj is the local-global
localization matrix of element j. The equivalent stress σeqj is given by

σeqj (x) =
√
σ2
j (x) + ϵ2, (3)

where the term ϵ is used to avoid singular values in the sensibility analysis (ϵ = 1× 10−6 is used in this work).

2.2 Critical load Relaxation

Local buckling constraints depend on local stresses and the critical load of each element. It is assumed that
the stress is relaxed as discussed in the previous subsection. Nonetheless, it is also important to update the critical
load as it is also a function of the effective Young’s modulus (design variables). The critical load Pj is defined as

Pj(x) = Φj(x)P
0
j , (4)

where Φj = xr
j is the proposed relaxation function for critical loads and

P 0
j =

E0
j Izjπ

2

L2
j

, (5)

where Izj is the moment of inertia of element j.
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2.3 Augmented Lagrangian method

The augmented Lagrangian function is described in Birgin and Martínez [10]. The function consists of
transforming the constrained problem into an equivalent unconstrained problem P k, where k is an outer iteration,
Heiden [11]. Thus, the new objective function is given by a functional that contains the original objective, the
constraints, the Lagrange multipliers µσ , µb, µu and a penalty parameter c.

P k


Min
x Lk

A = V (x) + ck

2

{
ne∑
j=1

⟨µ
σ
j
k

ck
+ gσj ⟩2 +

ne∑
j=1

⟨µ
b
j
k

ck
+ gbj⟩2 +

nrd∑
j=1

⟨µ
u
j
k

ck
+ guj ⟩2

}
S.t. x ≤ x ≤ x

, (6)

where ⟨a⟩ = max(0.0, a). Initial outer iteration k = 0 starts with a given penalty parameter c0 > 0, null Lagrange
multipliers and an user-provided initial point x0. Each sub problem Eq. (6) is then solved, returning xk. Multipliers
are updated according to

µσ
j
k+1 = ⟨µσ

j
k + ckgσj (x

k)⟩, j = 1..ne

µb
j

k+1
= ⟨µb

j

k
+ ckgbj(x

k)⟩, j = 1..ne (7)

µu
j
k+1 = ⟨µu

j
k + ckguj (x

k)⟩, j = 1..nrd

and penalty parameter is updated as ck+1 = γxk, where γ = 1.1 is used in this work. Sensitivities of LA with
respect to x were obtained analytically (adjoint method) and a simple Steepest descent with side constraints is used
to solve the inner problem.

Parameter b in the objective function is updated at each outer iteration (k) as

b =


7.0, if k ≤ 12

12.0, if 12 < k ≤ 15

b = b+ 5.0, if k > 15

, (8)

for the problems studied herein.

3 Results

Two benchmark problems found in the literature were adapted and used to assess the proposed formula-
tion Weldeyesus et al. [12]. Both examples use the same data: E0 = 210 × 109 Pa, A = 7.8 × 10−2 m2,
σ = 100 × 106 Pa and sσ = sb = 1.0. The same initial point x0 = 1 is used in all examples. Design variables
x are constrained to be within the range [1× 10−3, 1], where the lower value corresponds to "void" and the upper
value to base material.

Example 1: A "bracket" with dimensions of 2 × 3 × 6 m, as shown in Fig. 1a, with initial volume 1.657m3.
A point load with magnitude 100kN is applied at (1, 3, 3)m. A displacement constraint is set to node located at
(1, 3, 3)m, with limit value u = 1 × 10−3m in the z direction, along with local stress and buckling constraints.
Exponent r = 0.25 was used for relaxation of critical loads, p = 3.0 for stiffness and q = 1.5 for stress relaxation.

Example 2: A "tower" with dimensions of 2 × 2 × 4 m, as shown in Fig. 1b, with initial volume 0.780m3.
A point load with magnitude 1000kN is applied at (1, 1, 4)m. Displacement constraint is set to the node located at
(1, 1, 0)m in the z direction, limit value u = 1×10−2m, along with local stress and buckling constraints. Exponent
r = 0.25 was used for relaxation of critical loads, p = 3.0 for stiffness and q = 2.5 for stress relaxation.

Figure 2a and Fig. 2b show the optimized structures. Bars with x = 1 are shown as solid elements and bars
with x = 1 × 10−3 are not relevant to the final design. An important aspect of the present formulation is the fact
that all design variables are constrained at the optimized solution. Figure 3a and Fig3b, show the normal forces of
the optimized solutions.
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Figure 1. (a) Bracket problem (example 1); (b) tower problem (example 2).

Figure 2. Optimized topologies for example 1 (a); example 2 (b).

Figure 3. Additional information for example 1 (a); example 2 (b).
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Both results are feasible. The "bracket" has an optimized volume of 0.040m3 and the displacement constraint
is active at the optimized solution. Figure 3a shows the displacement constraint and the equivalent stress of this
structure.

The "tower" resulted in a volume of 0.167m3. The stress constraints are active at the optimized solution,
according Fig. 3b. The buckling constraints in some of the upper bars are also active. It was found that for
r ∈ [0.1 − 0.4] the optimization result has the behavior denoted in Fig. 2b. For values greater than this interval,
the optimized structure tends to incorporate intermediate bars in its central position and in the upper portion of the
structure.

4 Conclusions

Volume minimization of 3D truss structures subjected to stress, buckling and displacement constraints is
discussed in this work. Two benchmark problems found in the literature were studied. The results are feasible with
no presence of intermediate design variables, showing the effectiveness of the formulation. The initial parameters
of the problem and the values of the relaxation constants influenced the final topology of both problems.
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