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Abstract. This work aims to set the suspension optimal parameters of a quarter vehicle model, using an exhaustive
parametric optimization technique. The objective function minimizes sprung mass rms acceleration considering
a Gaussian white noise road profile for a fixed sprung/unsprung mass ratio with different control strategies for a
semi-active suspension system.
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1 Introduction

The ROTA 2030 initiative is a Brazilian state-funded program that provides advances on the automotive
technologies employed in the country. One of its focuses is to develop automotive control systems to improve the
safety of commercial vehicles. Ride comfort and handling are important qualities for car passengers experience
and security.

The suspension vehicle model is exhaustively studied in the literature [1] [2]. Random vibration road surface
profiles are used to determine acceleration levels [3] [4]. Gillesp [1] presents some design criteria to set the
suspension parameters of a urban vehicle. These design criteria are developed by a parametric analysis of the
acceleration transfer functions of a quarter vehicle model.

This work aims to set the suspension optimal parameters of a quarter vehicle model, using an exhaustive
parametric optimization technique. The objective function minimizes sprung mass rms acceleration considering
a Gaussian white noise road profile for a fixed sprung/unsprung mass ratio with different control strategies for a
semi-active suspension system.

2 1/4 vehicle semi-active and methodology

The quarter vehicle model is composed of a tire, which connects to the road, and a mass above it suspended
by a spring and a damper. The tire is represented by a mass hanging on top of a spring. The mathematical model
thus becomes

Ms 0

0 Mu

 ·

ẍs
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where k denotes the spring stiffness, c the damper constant, M the mass, z the road profile and x the position
of the masses. In cases where there are more than one spring or mass, the subscript denotes which one is being
referred with U being unsprung and S being sprung. The variables x and z are both time-dependents, while cs is
time-dependent if a semi-active suspension is being employed. Since z is a random value that follows a statistical
distribution, this equation is a stochastic differential equation. Hernandes and Spigler [6] lay out numerical solution
methods for such equations. While implicit methods are demonstrated, they become cumbersome to implement

CILAMCE-2022
Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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Figure 1. 1/4 vehicle model for a semi-active suspension. Reproduced from Melo [5].

in the semi-active model, where complicated rules are used to determine the value of cs. As such, they will not
be used in either model for consistency. The simplest explicit method is the Euler Forward scheme, which will be
chosen.

In the system with a passive damper, the equation can also be analytically solved in the frequency domain by
the method described by Inman [7], with examples of this specific system by Gillesp [1]. This analytical solution
will be used to validate the numerical model in the passive damper system. The relationship between suspended
mass gain and the system parameters as a function of a frequency ω is laid out in equation (2), while the same
relationship for the unsprung mass is in equation (3). All coefficients in the equation are made dimensionless by
division by the suspended mass term, with ξ being the ratio between the unsprung and sprung masses. Dimen-
sionless terms which are also present in equation (1) in a dimensional form are denoted by an sprung case to help
differentiate them.

H1(ω) =
Ks ·Ku + j · (Ku · Cs · ω)

R(ω)
(2)

H2(ω) =
Ks ·Ku + j · (Ku · Cs · ω)− ω2 ·Ku

R(ω)
(3)

where R is the term in equation (4).

R(ω) = ξ · ω4 − (Ku +Ks · ξ +Ks) · ω2 +Ks ·Ku + j · (Ku · C · ω − (1 + ξ) · C · ω3) (4)

The two properties which will be analyzed are the Root Mean Square (RMS) of the sprung mass movement
and the roadhold. The RMS of a property such as the gain subject to a white noise input is defined in [1] as the
integral of the square of the absolute of said property in the frequency domain, as shown in (5).

RMS(Hx) = S

∫ ∞

0

|Hx(ω)|2dω (5)

where S is the spectral density of the white noise which the system was subject to. [8] shows the use of this metric
by setting the minimization of it as a design objective. This is, in practical terms, declaring that the system must
seek the most comfortable ride possible by minimizing the vibrations felt by the passenger given a random road
profile. This is formally declared as the relationship in equation (6).

f1 = min(RMS(H1(K,C))) (6)
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where f1 is the objective function and K and C take all possible values in in the search space.
The Roadhold property is defined in [9] as the difference in height of the unsprung mass and the height of

the road profile, as a ratio of the height of the road profile itself. This leads to the term in equation (7). Since the
magnitude of the height of the unsprung mass divided by that of the road profile is simply the gain, it also leads to
the second form shown in equation (7).

rh(ω) =
xu − z

z
= H2(ω)− 1 (7)

where rh is the value of the Roadhold. The way this property manifests itself on the real system is that, the higher
the Roadhold is, the less normal force is exerted on the tires . Since a high gain means there’s less normal force,
it also means there’s less grip on the tires, which puts the vehicle at a greater risk of sliding. As such, it is both
a measure of how safe a vehicle is and how capable it is of maintaining contact in extreme situations. Since it is
useful to minimize it for every frequency, the relationship shown in equation (8) is used to determine how good a
vehicle is at this criteria. It measures which combination of properties in the search space lead to the lowest peak
in the Roadhold measurement, thus seeking the system that is the safest in it’s most extreme scenario.

f2 = min(max(rh(H2(K,C, ω)))) (8)

While the equations for the gain were already defined for the analytical solutions, the equations that are being
solved numerically are done so in the time domain. There is a need to take them to the frequency domain in order to
evaluate the two criteria proposed. This will be accomplished by performing the Fourier Transform of the position
vectors.

Since the road profile is random, there is no guarantee that a certain result isn’t an outlier. To minimize the
effects of randomness on the final results, each scenario was solved in the time domain multiple times with a
different random road profile, and the average of the Fourier transforms was used.

Even with the averaging process weeding out values too far from the expected real value, the transform is still
very noisy, with sudden oscillations and discontinuities in its derivatives. Another treatment is applied, a low pass
filter which smooths out the results. This process is done so the final curve more closely resembles the expected
behavior of the system, for the wild swings observed are simply an artifact of the random process not being ran for
long enough for the values in each bin to be more precisely determined.

For the semi-active systems, cs is a function of time. What value it assumes is a matter of what control strategy
is chosen. Two strategies will be contemplated in the present paper: The Skyhook and Groundhook strategies.
These are control strategies which attempt to make the real system emulate the behavior of their namesake systems.
The Skyhook system is a 1/4 vehicle model where a damper links the sprung mass with a fixed surface. The
Groundhook system is analogous, but it instead has a damper linking the unsprung mass to such surface.

Figure 2. Skyhook and Groundhook systems. Reproduced from [10].

Equation (9) is how the damping coefficient is calculated when employing the Skyhook model, and equation
(10) for the Groundhook. These equations are based on the model exposed in [10], with the difference that instead
of an on-off switch control scheme they are allowed to continuously vary inside the bounds later set.
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C = Csky · (
ẋs

ẋs − ẋu
) (9)

C = Cground · (
ẋu

ẋu − ẋs
) (10)

It will be assumed that there is instant knowledge of the speed of the masses by the controller. This is not true
on a real system, but this method allows for a baseline performance to be established.

3 Parameters and results

The equations were solved numerically with a time-step of 10−4. The road profile used was that of a white
Gaussian noise. The sprung mass was set as 250 kg, while the unsprung was set as 25 kg. The tire stiffness was
represented by a spring of 105 kN·m. The suspension spring and damper were left as free parameters in which the
response map would be built upon.

For the semi-active systems, there was the need to choose how the damping coefficient limits would be
implemented. Initially, a simple ceiling of 150% and a floor of 50% of the nominal damping coefficient value
were chosen. This was done in order to have a consistent rule that could be translated to all points in the domain
regardless of the different magnitudes, as opposed to a rule which anchored the extremes at constant values.

One pair of parameters which were harder to determine were the simulation time and number of samples
ran for a single point. To determine the least computationally intensive method that still delivered an acceptable
solution, the numerical solution was ran multiple times on 9 different points in the solution space for each com-
bination of simulation time and number of samples. The points were all possible combinations of 1e3, 1e4 and
1e5 for both the spring stiffness and and damping coefficient, each ran 60 times. The point which obtained the
highest measured value of standard deviation in comparison to its mean for each combination for was selected for
comparison. The criteria evaluated were the RMS, roadhold and frequency of peak response, but since in every
single test the greatest deviation was found in the RMS only the results for it will be shown. The results for the
passive damper configuration are in table (1).

Table 1. Standard deviations in proportion to the mean value for the most critical case in each test in the passive
regime.

Simulation time 50 s 150 s 600 s

3 runs 33,67 % 17,43 % 13,02 %

7 runs 24,09 % 20,69 % 8,07 %

11 runs 27,22 % 18,13 % 7,53 %

20 runs 23,11 % 18,24 % 7,71 %

As the data shows, both longer simulation times and more tests lead to a lower variation among the results
in the same point, with greater sensibility with regards to the simulation time. A Kolmogorov-Smirnov test failed
to reject the hypothesis that the results are normally distributed. As such, the 95% confidence interval is roughly
twice the reported standard deviation. For this interval to be less than 20%, the minimal run time has to be of 600s
and the minimal amount of runs has to be 7. However, the gains after that are not proportional to the increased
computational time. The best cost benefit becomes, then, to run 7 cases with 600 s for each one. If greater precision
is deemed necessary, it is better to increase the run time rather than run more cases.

For the semi-active cases, the results were mixed. The Skyhook model obtained 8% of the average as the
standard deviation with the chosen parameters, but the Groundhook obtained 18%. This is not an adequate value,
which prompted the evaluation with different parameters. Since the table (1) suggests the best cost-benefit lies
in increasing the simulation time, another battery was ran with the parameters of 7 tests and 1200 seconds. This
resulted in a standard deviation of 11% for the Groundhook model. This was considered enough and it was
thereafter calculated with said parameters. The results are also visible in table (2).
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Table 2. Standard deviations in proportion to the mean value for the most critical case in the semi-active regime
for 7 tests.

Groundhook - 600s Skyhook - 600s Groundhook - 1200s

18,14 % 8,14 % 11,30 %

Figure 3. Comparison between the analytical and numerical results for the Roadhold metric, top view, analytical
and numerical solutions respectively.

Figure 4. Comparison between the analytical and numerical results for the RMS metric, top view, analytical and
numerical solutions respectively.

Figure 5. Results for the numerical Groundhook system, isometric view, RMS and Roadhold metrics respectively.

Table 3. Value for the point of minimum in each case, as a percentage of the passive case with the same parameters.

Test RMS Roadhold

Passive 100% 100%

Skyhook 77,0% 96,9%

Groundhook 520% 86,6%
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Figure 6. Results for the numerical Groundhook system, top view, RMS and Roadhold metrics respectively.

Figure 7. Results for the numerical Skyhook system, isometric view, RMS and Roadhold metrics respectively.

Figure 8. Results for the numerical Skyhook system, top view, RMS and Roadhold metrics respectively.

Table 4. Position for the point of minimum in each case.

Test RMS Roadhold

Skyhook K: 3360 C: 100 K: 8858 C: 7847

Groundhook K: 5455 C: 100 K: 9712 C: 6092

The solution was calculated with both the numerical and analytical methodologies in the passive system. The
results are in figures (3) and (4). For the system with a semi-active damper, only the numerical simulation was
ran. The results for the Skyhook control method are in figures (5) and (6), and for the Groundhook control method
are in figures (7) and (8). Table (4) shows a comparison between the lowest values for the semi-active systems
compared to the passive system.

The solution of the system with a passive damper successfully demonstrated the behavior of the system with
respect to the RMS and Roadhold properties when the values of ks and cs are modified. A local minimum for the
Roadhold criteria was identified in the passive system inside the studied space, while the RMS showed that a local
minimum, if it exists, lies in very small values of spring stiffness and damper coefficients.
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The results show the same shape and relative magnitudes, with the main difference being that the numerical
solution has ’fuzzy’ borders, due to the randomness that the results bring.

The Groundhook system showed a similar geometry to the overall system in broader terms, but with certain
differences when looked at closely. Compared to the passive system, in the RMS metric the area which showed
a minimum occupied a much broader region, and was slightly shifted to the right, occurring at greater damping
coefficients. In the Roadhold metric, there was a shrinkage of the low value region, with regions of high spring
constants losing comparative performance. There was a slight gain at low spring and damping coefficient val-
ues. However, when the raw values are observed, it is perceived that the system showed an improvement in the
Roadhold, with stark regressions in the RMS.

The Skyhook system was more similar to the passive system, with the main difference being that the system
was slightly shifted so that the minimum values occurred at greater damping coefficient values. Overall, there was
a gain in absolute performance in both the comfort and handling characteristics of the vehicle when compared to
the passive system.

Both systems showed improvements. The results for the active suspension system developed by Shirahatti et
al [8] showed better performance gains on the same metrics, which is coherent with the expectations that an active
suspension will outperform a semi-active one. The Skyhook system presented better performance in the RMS,
while the Groundhook presented better performance in the Roadhold criteria.

4 Conclusion and perspectives

It was possible to obtain gains in ride comfort and handling for a vehicle by using a semi-active control
methodology. The benefits were greater with the Skyhook approach, but both methodologies showed positive
results in their expected niche when compared to the passive approach, with the Skyhook being a ride comfort
oriented system and the Groundhook a handling oriented one.

Future studies can be done on more modern control techniques, such as PID controlled systems. Furthermore,
different lower and upper bounds for the semi-active control systems can be explored to attempt to obtain better
results and to study the impact of increasing or decreasing the values that may be reached by the damper in
the vehicle performance. Another point of interest is how the system behaves when additional requirements are
imposed, such as the gain requirements for the octave bands which were dealt with by Shirahatti et al [8].

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.
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