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Abstract.  Artificial Intelligence (AI) is a field that has been drastically changing not only several areas of 

knowledge, but it also brings high expectations regarding the future of professions. While there are projections of 

great growth in demand for data scientists, there is the possible threat to unqualified labour, where AI can offer a 

low-cost alternative. Deep Learning is a subset of Machine Learning, which is a field dedicated to the study and 

development of machines [1], which can be seen as a stage of AI. Also called Deep Neural Network, refers to 

Artificial Neural Networks (ANN) with multiple layers. In recent decades, it has been considered one of the most 

powerfull tool, and has become very popular in literature as it is able to deal with a great amount of data. Interest 

in having deeper hidden layers began recently to overcome the performance of classical methods in different fields, 

especially in pattern recognition [1]. Neural networks are used in many areas, such as search algorithms on search 

engines, content recommendation algorithms, autonomous cars, speech recognition (audio), natural language 

recognition (text) and computer vision (images). The use in image recognition is mainly done with Convolutional 

Neural Networks. Thus, the present work intends to apply Convolutional Neural Networks for the detection of 

cracks in concrete structures through image processing, especially the obtained with drones. The detection of 

cracks by visual inspection can be a very laborious process, depending on the number of cracks and the difficulty 

of access, in addition to relying heavily on the subjectivity of the observer. Thus, several methods have been 

proposed to automate this process, which consist of image processing techniques. However, the implementation 

of these techniques is difficult when there are adverse conditions, such as changes in different textures [2]. It is in 

this sense that the use of neural networks brings the expectation of being a method appropriate in relation to the 

stability in the detection, even considering variations in the conditions for acquiring images, such as lighting, angle 

of acquisition, texture, dimensions, among others. This expectation is mainly due to the ability to automatically 

learn the characteristics relevant to the detection of cracks, whereas there are adverse conditions in the learning 

data. 
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1  Introduction 

There are dozens of recent studies (between 2016 and 2019) that propose the detection of fissures using fully 

convolutional networks with semantic segmentation. This recent technique has represented a great advance in the 

field of detection of pathologies in reinforced concrete, asphalt, among others, because it is capable of defining a 

contour region of the irregular fissure. 
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1.1 Conventional Neural Networks 

Conventional Neural Networks are formed by multiple perceptrons organized in multiple layers, forming a 

computational model capable of recognizing patterns based on learning data. Each data point has input 

information, which is measured numbers for solving a problem. These numbers can be the temperature of the day, 

the price of a stock on yesterday, or the hit index of a baseball player [1]. Based on this information, the neural 

network tries to make a prediction, for each prediction, the neural network makes a comparison as a real result, 

which constitutes the label or "feedback" of each set of input information. Based on this comparison, the neural 

network adapts to perform increasingly accurate predictions. 

1.2 Convolutional Networks 

The application of Convolutional Neural Networks (CNNs) has brought great results in the area of pattern 

recognition, including image and voice processing, autonomous car control and cancer detection. These 

achievements were the result of the development of new neural network architectures, which are able to perform 

tasks that were not possible with conventional models. Convolutional networks work with the same principles as 

a conventional neural network: perceptrons are organized in layers, taking several numerical values as input and 

generating one or more outputs. Error and activation functions are defined, and learning takes place with 

backpropagation. What changes is the structure of the network: instead of using fully connected layers, 

convolutional layers are used, which are connected locally. This drastically reduces the number of parameters 

required for learning (weights), which makes it possible for networks to learn much faster. Interspersed between 

convolutional layers, pooling layers are used, and at the end of the network, fully connected layers (dense layers) 

are used to generate the final output (Figure 1). 

 
Figure 1. Organization of layers in a convolucinal network (VGG-16 network architecture). Source: Jordan, J.  [3] 

1.2.1 Tools 

The development and training of the convolucinal neural network was carried out with Keras, which is a 

DeepLearning package for Python. This package, in turn, uses tensorflow to perform machine learning operations, 

allowing the researcher to worry only about the most important details of the implementation of the neural network 

(architecture, data, learning parameters). The development environment was the Jupyter Notebook. 

Thus, Keraspermite allows you to implement each layer of a neural network with a line of code, explaining 

the type of layer (dense, convolutional, pooling, or activation layer) and its parameters (number of filters and their 

dimensions, type of activation). Finally, the model is compiled and several parameters are defined to improve 

learning, such as stochastic descending gradient, dropout, regularization of weights and momentum. Once the 

template is ready, simply save and use it for the desired implementation. 
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2  Building a model for crack detection 

2.1 Model Architecture 

The detection of the fissure consists of the delimitation of the region occupied by the fissure in the image, 

according to Figure 2. 

 
Figure 2.  Crack detection using convolutional neural network. Source: Cha et al. [2] 

Therefore, we aim at a computational vision of the fissure, which will allow future studies that can automate 

several processes in the area of study of pathologies, such as determination of crack opening, total length of cracks, 

total amount of injection material necessary for recovery of a cracked region, etc. To achieve this goal, the 

detection model will input an image with cracks, which will be divided into small images with dimensions of 

227×227 pixels. For each of them, the neural network will make predictions regarding the presence or absence of 

fissure, which are the two categories under study. These predictions consist of values between 0 and 1, which 

represent the probability of the analyzed image belonging to the corresponding category (categorical cross 

entropy). The highest value between these two probabilities is taken as a result. Thus, it will be possible to delimit 

the region occupied by the fissure in the image, as presented by figures 3 and 4. 

 
Figure 3. Methodology of the work, proposed by Cha et al. [2] 

The architecture to be trained will be proposed by Cha et al. [2], whose layout and layer information are 

shown in Figure 4, respectively. The only change in this architecture is the input layer dimension of 227×227 

instead of 256×256, the dimension used in Cha's study. This change was implemented to adapt the model to the 

database used, which has images with a resolution of 227×227, thus discarding the need for resizing images during 

the training process. In addition, the study of Dung, C.  V., Anh, L.  D. D. [4] reported good results using this 

resolution, which was another factor in favor of this choice. 
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Figure 4.  Convolutional network architectureSource: Cha et al. [2] 

According to Cha et al. [2], this architecture demonstrated maximum training and validation accuracy of 

98.22% in the 51st season and 97.95% in the 49th season, respectively. This metric was measured in 32,000 

training images and 8,000 validation images. In addition, the proposed model uses several popular methods in the 

area of machine learning to avoid overfitting, such as stochastic gradient descent (SGD) and dropout. All of these 

measures are available for implementation with Keras. In addition to the layers explained in the present work, the 

model also implements batch normalization layers, which apply a standardization to its input, making its output 

have an average close to zero and standard deviation close to 1. These layers have the function of accelerating 

training and reducing the chance of overfitting, as well as enabling processing with values in a controlled range, 

which is usually the best choice when using numerical/computational methods. 

2.2 Database 

We used the open-source database created by Özgenel [5], which consists of 40,000 images with a resolution 

of 227x227 pixels, divided into two directories corresponding to the two labels of interest: "Positive", relative to 

the presence of fissure, and "Negative", relative to absence. Each label has the same amount of images (20,000 

images contain fissure and 20,000 images do not). 

Then, a Python script was written to divide the database into training, validation, and test sets at a 

70%:15%:15% ratio at random. Each of these sets has the same number of images for both labels (with and without 

fissure). 

It is important to note that the database used has more open fissures, different from the database used by Cha 

et al. [2], formed by images with more closed fissures. However, the use of training images with open fissures was 

also promising for the classification task, as shown in the results. 

2.3 Preprocessing 

Preprocessing training, validation, and testing images consists of two steps: 

The first is abnormalization of pixel values so that they vary in the range from 0 to 1. Because each pixel 

has an intensity value from 0 to 255, just divide these values by 255. This normalization is quite common when 

working with images, and serves for weights to change evenly throughout learning. 

The second step is to upload the images. When using large databases, it is impossible to load all training data 

at once because there is a RAM limit. Thus, it is necessary to load the images from the disk as the model is trained. 

Therefore, the pre-processing of the images occurs as illustrated in Table 1. 

Table 1. Pseudo-code of image preprocessing 
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The maximum value of batch_size depends on the amount of RAM available. Knowing that each image will 

result in an array of 3x227x227 dimensions (3 color channels, times 227 pixels tall, times 227 pixels wide), and 

that each element of this array will occupy 4 bytes float of 4x8 = 32 bits), it is estimated that each image will 

occupy 600 KB. Thus, a batch of 1024 images would take up 600 MB of memory, for example. To ensure that at 

each time the model has the chance to use all training images, it is usual to set the number of steps per season 

(steps_per_epoch) as the size of the training set divided by the size of the batch. 

In the development of the model, we used batch_size = 1024, which results in values from steps_per_epoch 

equal to 28, 6 and 6 for the training, validation and test sets, respectively. 

2.4 Training, Validation and Testing Results 

The model was trained using training accuracy as a metric. The graph in Figure 5 shows the evolution of 

training and validation accuracy over 50 seasons. 

 

 
Figure 5.  Evolution of training and validation accuracy 

As can be seen from the chart above, the model reached great accuracy in a few seasons. This is probably 

due to the fact that the presence or not of fissures is relatively easy to be learned by the neural network used, 

because neural networks of similar size are able to deal with classification problems with many more categories 

and complexity of characteristics. 

It can also be noted that the accuracy in the validation set fluctuated greatly at certain times. In some cases, 

this may be a sign of overfitting, characterizing a situation in which the model learns the training set very well, but 

does not generalize the learning to get it right in the validation set, which causes an oscillation in the accuracy of 

validation that tends to randomness. 

However, in the present study, this oscillation in the accuracy of validation can be attributed to the fact that, 

throughout learning, the model was varying between several optimal solutions, some of which did not generalize 

well for the validation set. One solution to this problem would be to implement regularization of weights, or 

increase the ratio of dropout layers. 

In any case, the model was able to achieve an optimal solution for both test and validation sets, with accuracy 

of 99.95% and 99.78%, respectively. The accuracy of the test at the end of the seasons was 99.8%. 

However, the high validation and testing accuracy did not correspond to a good performance of the model in 

all situations, as explained in section 2.6. It is suspected that the database did not have a good variety in terms of 

crack opening and contrast. Thus, one should not take these metrics as good indicators of the generalization 

capacity of the model. 

Next , the tests on images taken by mobile phone and found on the Internet are presented. An application has 

been developed that uses the trained model to detect cracks in photos of varied resolutions. Its development, as 

well as its limitations, are discussed in the following items. 
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2.5 Application Development 

As an example of neural network application, an application that implements the model in a simple way was 

designed. 

The application works as follows: the user chooses a photo of a concrete surface with cracks. Then chooses 

the size of the sliding window that will scroll through the photo (Figure 6, left). 

       
Figure 6.  Demo of the developed application: settings and result. Authors' Images 

This sliding window traverses the image using a step equal to half its dimension. In each position, the model 

makes a prediction regarding the absence or presence of fissure, and the results are presented graphically in order 

to form a region of detection of the fissure. 

It is important to note that the window step was used to allow detections to overlap each other, which prevents 

a fissure from being found only in the corner of an image. This type of situation can make detection difficult, even 

if the model has been trained with an image bank that contains figures with cracks in the edges. 

To ensure that the model works with images of various resolutions and window sizes, the window-generated 

image sections are resized to the resolution of 227×227 pixels, which is the input dimension of the neural network. 

The detection result is shown in Figure  6 on the right. 

This app was developed to work in the browser, using tensorflowjs. This technology made it possible to 

convert the model developed in Keras to a model that can be used in javascript, as well as the implementation of 

the preprocessing steps, including the sliding window, in this language. However, bugs of tensorflowjs were found 

when we tried to use the application on less powerful phones and machines, as this technology is still new and 

needs further development. 

The application can be accessed at this link:https://tulio-vieira.github.io/concrete-crack-detector-app. It is 

recommended to use the Google Chrome browser for use. 

2.6 Limitations 

The developed application does a good job to portray the situations in which the model has good performance 

or not. Basically, the more images generated by the sliding window are similar to training images, the better the 

detection. Thus, the model brings the best results in crack photos that have a sharp contrast between the fissure 

and intact surface, with a choice of window dimension that depicts a crack opening similar to that shown in Figure 

7. 

 
Figure 7.  Crack detection under optimal conditions 
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Situations in which the concrete surface presents other artifacts, such as corrosion and  stains or contrast that 

was not high enough for good detection, do not result in good results, because the model was not trained for such 

situations. An example can be seen in Figure 8. 

 
 Figure 8. False positives due to stains 

Finally, it is recommended that the figure have an acceptable resolution, in order to generate appropriate 

clippings with dimensions close to 227 pixels. 

3  Conclusions 

The present work aimed to demonstrate a simple application of neural network (deep learning) for cleft 

detection, focusing on the classification of image clippings to generate a detection region. Using a relatively simple 

architecture, it was possible to generate good results, as long as the ideal detection conditions are present. These 

results can still be improved with the use of more complete databases, which contain cracks in stained surfaces 

and with less contrast, which can also be used in conjunction with open-source databases. In addition, it was 

possible to demonstrate the use of tensorflowjs, which made possible the development of a crack detection 

application in the browser. This technology greatly facilitated production, as it made it possible to automatically 

convert the trained model to the javascript environment. At the present time, the tensorflow development team has 

been releasing several versions of the technology, including versions for micro-controllers and other languages, 

which is further consolidating its position as the production platform for machine learning models. It is important 

to emphasize, however, that the present work focuses only on one of the tasks relevant to detection, which is the 

classification of the image. To achieve more sophisticated detections, it is necessary to implement models capable 

of performing the semantic localization and segmentation of the cracks. These tasks include not only the 

implementation of neural networks with complex architectures, but also advanced algorithms that work together 

with those networks. In the midst of this complexity, several authors have proposed several alternatives, with the 

most recent articles dating from this year of writing. The state of the art in the area of crack detection appears to 

be in the research of Young-Jin Cha [6], who developed an algorithm capable of detecting cracks at pixel level in 

real time, using an auto-encoder architecture. 

Although the present work does not follow the latest developments in the area, it still presents the basic 

concepts of computer vision and machine learning, which are the basis for the development of more complex 

models and algorithms. It was also possible to portray issues related to the production of a machine learning model, 

whose code and implementation details can be found in the github repository:https://github.com/tulio-

vieira/concrete-crack-detector-app. The notebooks used for training, in turn, can be found here: 

https://github.com/tulio-vieira/concrete-crack-detector-train. 
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