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Abstract. The concrete deformations have been researchers study object in the structural safety of dams process. 
These deformations, which occur over time, are influenced by various physical and environmental factors. One of 
the environmental factors that affect the deformations of concrete is the ambient temperature. In this paper, a 
hybrid method called SARIMAX-NEURAL is presented for prediction of concrete deformations that are 
influenced by ambient temperature. This hybrid method was defined as a linear combination of predictions from 
Box & Jenkins methodology models and Deep Learning neural network models with Long Short-Term Memory 
architecture. Historical data of concrete deformations were measured by rosettes strain installed in a buttress block 
in the Itaipu dam for a period of 34 years. The proposed hybrid method, which considered the effect of ambient 
temperature on the deformations of concrete, effective results presented in comparison with the individual methods 
in which the effect was not considered to ambient temperature. The predictive accuracy gains were between 25% 
and 60%. 

Keywords: Time series. Deep Learning Neural Networks. Box & Jenkins models. 

1 Introduction 

Phenomenon that occurs in concrete, over time, deformations and have been the object of research worldwide 
from the second half of the twentieth century in civil construction, in general, and in concrete dams of hydroelectric 
plants. Deformations are considered a highly complex phenomenon due to the many factors that influence it, such 
as: geometric factors – dimensions of the concrete structure; environmental factors – ambient temperature and 
relative air humidity; concrete mass aggregates - water/cement ratio [1]. 

This paper presents a hybrid method in time series, called SARIMAX-NEURAL, to model and predict the 
deformations of concrete taking into account the effects of ambient temperature on them, with historical data from 
deformimeter rosettes installed in the D57 buttress block of the Itaipu hydroelectric plant. 

 
This hybrid method was defined as the linear combination, that is, the sum of the predictions of the 

Autoregressive Integrated Moving Averages methods with exogenous variables (SARIMAX) and the Deep 
Learning (DL) Recurrent Neural Networks (RNN) method with Long Short-Term Memory (LSTM) architecture. 
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2 Theoretical Reference 
2.1 Concrete Deformations 

The study of concrete deformations has been the object of research by researchers for decades. The 
deformation produced by drying was studied by Gerald Pickett in the 1940s and became known as the Pickett 
effect ([2] apud [3]). This effect can be controlled in sealed specimens, but in constructions such as concrete dams 
the Pickett effect cannot be disregarded (as is the case with the Itaipu dam). [4] says that the Pickett effect 
corresponds to creep by drying. 

According to [4], in concrete under loading there are three main types of deformations over time: elastic 
deformations - always reversible; visco-elastic deformations - partially reversible, with an elastic phase and a 
viscous phase; plastic deformations - always irreversible. Elastic deformation has an instantaneous and a retarded 
part - in instantaneous elastic deformation the stress-strain relationship is governed by Hooke's Law, but retarded 
elastic deformation is time-dependent. According to NBR6118 the total deformation of concrete is composed of 
three parts: immediate deformation, creep deformation and shrinkage deformation. For [5] concrete deformations 
are affected by five factors, as shown in Table 1. 

Table 1 - Factors that influence in the deformations of concrete over time 

Groups Factors 

Environmental factors Relative humidity, air temperature, ventilation and 
solar radiation 

Material factors Cement type, A/C ratio, % paste, additives, 
aggregates and fck 

Geometric factors Shape and medium thickness 
Mechanic factors Charging intensity 
Temporal factors Age of the concrete 

Concrete Age at Charging 
Time of charging 

According to [6] since 1982 several mathematical models have been proposed for modeling concrete creep 
and shrinkage. The most cited are: The B3 model [7], GL2000 model [8], Eurocode 2 EC2 model [9], NBR6118 
model [10] and ACI model [11]. Each of these models has its own complexity regarding the amount of input data, 
considering the different characteristics of each type of concrete. It should be noted that in these models the design 
data are used for the simulations of the deformation curves, but in the hybrid time series method presented in this 
paper, the data for numerical simulation are real concrete deformation data. At the Itaipu hydroelectric plant, 
concrete creep is measured, as follows [12]. 

2.2 Times Series: Box & Jenkins Methodology 

The Box & Jenkins methodology was developed with the objective of identifying a probabilistic model from 
a stationary second-order time series, that is, with constant mean and variance. That is, the data must have a linear 
self-dependence or autocorrelation structure between time series values [13]. The ARMA(p,q) model for a 
stationary Zt time series is composed of the Autoregressive AR(p) and Moving Average MA(q) models, where p 
is the number of autoregressive parameters (taking p previous values to define the prediction) and q is the number 
of moving average parameters (taking the average of the errors of the p autoregressive values). This model is 
represented by: 

       2 2
1 2 1 21 ... 1 ...p q

p t q tB B B Z B B B a                          (1) 

Where 1, 2, ..., p e 1, 2, ..., q are the parameters, autoregressive and moving averages, respectively, to be 
determined,  is a constant of the model and at is the error or random shock. 



Lucas da Silva Ribeiro, Samuel Bellido dos Santos, Jairo Marlon Correa, Tássia Hickmann, Étore Funchal de Faria  

CILAMCE-2022 
Proceedings of the joint XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu, Brazil, November 21-25, 2022 
 

If the time series presents seasonality, then the statistical model can be said to be multiplicative 
SARIMA(p,d,q)(P,D,Q)s, where P is the auto regressive order of the seasonal part, D is the difference order of the 
seasonal part (if the series is not stationary) and Q is the number of moving average parameters of the seasonal 
period s. The order of the p, q, and d parameters is identified by analyzing the profile plots of the Autocorrelation 
Function (ACF) and Partial Autocorrelation Function (PACF) according to [14]. The SARIMA model for a non-
stationary time series Zt with seasonality is defined by the equation: 

  ( ) ( )(1 ) (1 ) ( ) ( )s s D d s
t tB B B B Z B B a        (2) 

The univariate Box & Jenkins methodology also allows the use of exogenous variables (or explanatory 
variables) in the composition of the adjusted model, making it possible to study the impact of these variables on 
the prediction model. The inclusion of exogenous variables Xr in model (2) generates the model 
SARIMAX(p,d,q,r)x(P,D,Q)s, [15], defined by: 

  ( ) ( )(1 ) (1 ) ( ) ( ) 1 ds s D d s
t t rB B B B Z B B a B X             (3) 

where,  are the coefficients of the exogenous variables Xr. 

being 
i) B is backward translation operator or delay operator, m values, defined as m

t t mB Z Z  ; 

ii) 1(B) 1 ... p
pB B       is non-seasonal autoregressive part, in polynomial form, of order p; 

iii) 1(B ) 1 ...s s Ps
pB B       is the seasonal autoregressive part of order P and seasonal order s; 

iv) (1 )s DB  is the seasonal differentiation operator of order D and seasonal order s; 
v) (1 )dB  is the non-seasonal differentiation operator of order d; 
vi) 1(B) 1 ... q

qB B       is the non-seasonal part of moving averages, in polynomial form, of order q; 

vii)  1(B ) 1 ...s s Qs
QB B      is the seasonal part of Q-order moving averages and seasonal s. 

2.3 Recurrent neural networks deep learning (RNN-DL) 

Being a class of neural networks that includes weighted connections within a hidden layer, forming loops 
that can store information when processing new inputs, Deep Learning networks with LSTM architecture create a 
long internal short-term memory in which previous inputs are considered as data from the time series itself [16]. 
In one-way or feed-forward neural networks called Feed-forward neural networks, there is only one path to take: 
from input to output. There is no feedback (loops), that is, the output of any hidden layer does not affect the same 
layer. Recurrent or feedbacked neural networks, on the other hand, can have synaptic signals traveling in both 
directions, introducing loops in the network. Computations derived from previous input are fed back into the 
network, giving them a kind of "short memory". Their "state" changes continuously until it reaches an equilibrium 
point, remaining at that point until the input changes and a new equilibrium is found [17]. 

The practical effect of this is that there is short-term memory in the net, but for a long period of time. 
Considering learning by training a kind of long-term memory, then recurrent neural nets can create much more 
complex models capable of solving a wider range of problems [18]. It is important to note that Deep Learning 
neural networks with Long Short-Term Memory (LSTM) architecture are suitable for prediction of sequential time 
series [19].   

3 Materials and Method 

For this paper, the historical data (of a 34-year period) of corrected concrete deformations and ambient 
temperature were made available by Itaipu and measured by deformimeter rosettes installed in the D57 buttress 
block. It was necessary to transform the historical data into time series by means of cubic spline, redistributing the 
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data on a weekly basis. The SARIMAX-NEURAL hybrid method presented in this paper is applicable to seasonal 
time series with exogenous variables and its modeling has two phases: in the first phase, modeling is performed 
by the SARIMAX model to predict the linear component of the prediction; in the second phase, modeling is 
performed, in the series of residuals from the SARIMAX model, via recurrent deep learning neural networks with 
LSTM architecture, called (RNN DL-LSTM) to predict the non-linear component of the prediction. 

Generically, the linear and nonlinear predictive components, respectively, for a time series   1

N
t t t

Z z


  can be 
denoted by: 

 ( ) ( )tz CL t NL t    (4) 

Thus, the hybrid method prediction was obtained as a linear combination (sum) of the out-of-sample prediction 
(of the linear and nonlinear components) and represented by: 

 
___ ___

ˆ ( ) ( ) ( )f ffz t h CL t NL t     (5) 

Where 
___

( )fCL t  is the linear component of the prediction (outside the training sample) and 
___

( )fNL t  is the 
nonlinear component corresponding to the prediction (outside the training sample) of the time series of the in-
sample SARIMAX method residuals, that are represented by: 

                                                        ˆ ˆ( )a t a t ae t z z               (6) 

Where taz  is real value and ˆtaz  is value predicted within the sample. Thus, 
___

( )fNL t  is prediction, by 
recurrent neural networks deep learning with LSTM architecture, of the data series of equation (6), with the 
prediction horizon h = 52 weeks ahead. 

4 Results and Discussion 

The predictions obtained by the SARIMAX-NEURAL hybrid method were compared with the predictions 
of the individual SARIMAX, SARIMA and RNN DL-LSTM methods. To verify the accuracy of the predictions 
three adherence statistics were used: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) e 
Root Mean Square Error (RMSE), [14], defined by: 

 
1

1 ˆ( ) ( )
N

t
MAE z t z t

N 

    (7) 

 
1

ˆ1 ( ) ( )
( )

N

t

z t z tMAPE
N z t


    (8) 

  2

1

1 ˆ( ) ( )
N

t
RMSE z t z t

N 

    (9) 

For this paper, data from rosette RD-D-09 is located upstream of buttress block D57 were used. The data 
were measured over the period from June of 1981 to December of 2017 standardized weekly by Cubic Spline, as 
they were originally on a different time scale. 1828 sample data were used for fitting the individual SARIMA, 
SARIMAX and RNN DL-LSTM methods, in the predictions a prediction horizon h = 52 was used, i.e. 52 steps or 
weeks ahead. In the Fig. 1 shows the time series of corrected concrete deformations of the five deformimeters 
(arms) of the RD-D09 deformimeter rosette of the D57 buttress block of the Itaipu hydroelectric power plant. 
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Figure 1 - Time series of corrected concrete deformations of the RD-D09 deformimeter rosette 

 
The parameters of the fitted SARIMAX(p,d,q)x(P,D,Q)52 model were determined using the R software. The 

order of the parameters of the automatic model was chosen by the Akaike Information Criterion (AIC) and adjusted 
by the MAE, MAPE and RMSE criteria on the training sample. Modeling via recurrent neural networks RNN DL-
LSTM was in Matlab software, applied to the SARIMAX model residuals. Predictions were calculated for a 
prediction horizon h = 52 weeks ahead.  

TABELA 2 - Comaparação da precisão das predições por diferentes métodos preditivos para a roseta RD-D09 

MÉTODO 
ROSETA RD-D09-1 

MÉTODO 
ROSETA RD-D09-2 

MAE MAPE RMSE MAE MAPE RMSE 
SARIMA(2,2,3)(0,0,2) 8,34 1,74 9,10 SARIMA(4,2,5)(1,1,0) 16,82 2,59 18,83 
RNN DL-LSTM 8,66 1,81 9,39 RNN DL-LSTM 5,70 0,87 7,26 
SARIMAX(4,2,3)(0,1,1) 1,31 1,52 7,98 SARIMAX(0,2,1)(1,1,1) 8,57 1,31 9,80 
SARIMAX-NEURAL 4,51 0,94 516 SARIMAX-NEURAL 6,92 1,06 7,86 

MÉTODO ROSETA RD-D09-3 MÉTODO ROSETA RD-D09-4 
MAE MAPE RMSE MAE MAPE RMSE 

SARIMA(2,2,4)(1,1,0) 17,26 3,06 19,34 SARIMA(5,2,4)(0,0,1) 1,29 0,22 2,04 
RNN DL-LSTM 9,95 1,39 9,38 RNN DL-LSTM 4,03 1,03 4,64 
SARIMAX(0,2,1)(1,1,1) 8,39 1,49 9,79 SARIMAX(4,2,3)(0,1,2) 3,75 0,95 4,51 
SARIMAX-NEURAL 5,35 0,94 6,12 SARIMAX-NEURAL 3,28 0,83 4,03 

MÉTODO ROSETA RD-D09-5     
MAE MAPE RMSE     

SARIMA(2,2,2)(1,1,0) 7,78 1,39 9,68     
RNN DL-LSTM 8,58 1,53 9,71     
SARIMAX(4,1,4)(1,1,1) 6,44 1,14 7,04         
SARIMAX-NEURAL 5,47 0,96 6,29     
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The Figure 2 show parts of the corrected concrete deformation series and their predictions by the hybrid 
SARIMAX-NEURAL method and the individual SARIMAX, SARIMA and RNN DL-LSTM methods for arms 
1, 2, 4 and 5 of the RD-D09 rosette. 

 
Figure 2 – data and predictions of four rosette branches RD-D09 by methods SARIMA, RNN DL-LSTM, 

SARIMAX E SARIMAX-NEURAL 

The Table 3 presents the comparison of the hybrid method's accuracy of the mean values, i.e., the mean of 
the values of each statistic from Tab. 2, against the individual methods. Note that the goodness of fit statistics 
MAE, MAPE and RMSE, of the predictions by the proposed hybrid method were lower than the same statistics of 
the individual methods' predictions. The percentage gains correspond to how much more accurate the hybrid 
method was in the predictions relative to the other methods in each statistic (per column). 

Table 3 - Comparison of the adherence statistics of the RD-D09 rosette predictions with the respective 
percentage gains 

METHOD 
DEFORMIMETER ROSETTE RD-D09 

MAE MAPE RMSE Percentage comparison 
SARIMA 12.65 2.42 14.36 58.77% 59.99% 57.99% 
RNN DL-LSTM 6.98 1.32 8.08 25.29% 26.93% 25.30% 
SARIMAX 6.88 1.28 7.82 24.20% 24.47% 22.88% 
SARIMAX-NEURAL 5.22 0.97 6.03 0.00% 0.00% 0.00% 

The Figure 3 summarizes the mean values of the MAE, MAPE, and RMSE goodness-of-fit statistics against 
each method for the 5 modeled time series of the RD-D09 deformimeter rosette of the D57 buttress block. 
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Figure 3 - Comparison of the mean values of the statistics MAE, MAPE e RMSE for 5 time series of the rosette 

RD-D09 

5 Conclusions 

It can be stated that by the better prediction accuracy of the hybrid method compared to the individual 
methods, indeed the ambient temperature has an influence on the corrected concrete strains. This was confirmed 
by the percentage predictive gain between 25% and 60% over the SARIMA and RNN DL-LSTM methods where 
the predictions were only on modeling the concrete strains under the effect of ambient temperature. 

When comparing the hybrid SARIMAX-NEURAL method with the SARIMAX method, the predictive gain 
was between 22% and 25%. In this case, the better prediction accuracy was due to the modeling of the SARIMAX 
residuals by means of the recurrent neural network RNN DL-LSTM, since the hybrid method prediction was 
defined as the sum of the SARIMAX prediction with the RNN DL-LSTM prediction of the SARIMAX residuals. 
It is important to highlight that the hybrid method presented in this paper was applied and tested its efficiency in 
real concrete strain data, in which the respective time series presented seasonality and also with linear and 
nonlinear self-dependence structure. It is also noteworthy that the hybrid method can be applied to predict other 
types of instruments that measure different phenomena of concrete, as well as being applicable in other areas of 
engineering. 
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