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Abstract. The present study aims at the non-linear analysis of steel-concrete composite cross-sections. The strain
compatibility method (SCM) is used to describe the sections deformed shape in each step of the incremental-
iterative solution process. For the full analysis of the moment-curvature relationship, the SCM is coupled to
path-following strategies (adapted generalized displacement technique and adapted minimum residual displace-
ment method) to go beyond the critical bending moment points in the construction of the relations that describe
the complete cross-section mechanical behavior. Concomitantly, the strain-control strategy is implemented as an
alternative numerical approach and used for comparison, since the bending moment limit points do not prevent the
complete construction of the cross-section equilibrium path. The constitutive relationships are addressed explicitly,
as well as the residual stresses present in the steel sections. To validate the proposed numerical formulation, the
results obtained are compared with the numerical and experimental data available in the literature. To validate the
proposed numerical formulation, the results obtained here are compared with the numerical data available in the
literature. Additionally, the softening effect on the concrete was increased to induce descending stretches in the
moment-curvature relationship, and this condition was correctly evaluated.
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1 Introduction

The analysis of cross-sectional behavior is important to measure the parameters of its stiffness and bearing
capacity, directly impacting the structural element behavior. Considering the nonlinear stress-strain relationships
of materials, the numerical analysis procedures must be able to accurately capture such effects. For this evaluation,
it is common to find studies that deal with the construction of interaction curves that delimit the elastic regime
and the bearing capacity, for example. It is also possible to find analyzes of the cross-sectional behavior along the
loading history through the moment-curvature relationship.

Bonet et al. [1] developed integration algorithms for the evaluation of reinforced concrete cross-sections sub-
jected to biaxial bending and axial force. The decomposition of the cross-section into layers, with quadrilateral
finite elements, was performed and Gauss quadrature was used to solve the integrals.Sousa Jr and Muniz [2] pre-
sented a numerical procedure for analysis of steel, reinforced concrete or composite cross-section of arbitrary
polygonal shape, based on analytical evaluation of cross-section properties. The uniaxial stress–strain relationship
was supposed to be of a piecewise polynomial type, and the subdivision of the section into subregions was per-
formed by means of a contour algorithm. In a similar way, some researchers sought evaluations of the deformed
state of the section for the required condition [3]. For example, Liu et al. [4] made variations in the neutral axis
positions, simultaneously considering the limiting strain of some of the cross-section component materials to anal-
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yse specific interaction curves. These studies focused in generically sections shapes or determined types, as made
by Li et al. [5], that analysed rectangular tubular and welded-I cross-sections using a quasi-Newton method [6].

For the evaluation of the cross-sectional behavior after the critical point of the moment-curvature relationship,
Chiorean [7] presented an incremental-iterative procedure based on arc-length approach. Thus, the active bending
moment was updated at each iterative cycle, making it possible to evaluate the cross-section with strains greater
than those responsible for the critical bending moment. This approach was later applied in a brief study of a steel
I section totally encased in concrete considering the AISC LRFD [8] and ECCS [9] residual stress models [10].

More recently, Lemes et al. [11] used the strain compatibility method (SCM) to assess the strength and also
axial and bending stiffness within the context of concentrated plasticity-based formulations. The standard Newton-
Raphson method was coupled to the SCM where the constitutive relationships of the materials were explicitly
used. In the these researches, a simplified incremental-iterative strategy was adopted, which was interrupted when
finding the moment limit point at the moment-curvature relationship. In other words, the softening parts of these
relationships were not obtained. Once using constitutive relations disregarding the materials strain-softening effect,
such a softening stretch is not considered.

In this sense, Caldas [12] pointed out that a simple solution to obtain the stretches with negative rigidity of the
moment-curvature relationship could be found using an increment strategy based on deformations. Chiorean [13]
presented a formulation for the complete construction of the moment-curvature diagrams that were determined
such that axial force and bending moment ratio was kept constant. A strain-driven algorithm was developed and
implemented, and the solution of the nonlinear equilibrium equations was controlled by the assumed strain values
in the most compressed point and by solving just two coupled nonlinear equations.

The purpose of this work is to use path-following methods to pass through critical points in the moment-
curvature relationship of cross-sections composed of steel and concrete. Utilizing the analysis of bending along
the principal axes of inertia allows for predicting how a structure will behave when subjected to a load. When
reaching the maximum point of the moment-curvature diagram for a normal stress value, it constitutes a failure
point on the interaction surface of moments for those normal stresses. The diagrams express the behavior of the
structure at each level of loading until its failure. For corrections and control in the load increment, adaptations
were made in the Generalized Stiffness Parameter (GSP) [14] to the variables present in the problem addressed
here. During the iterative process, the minimum residual displacement norm strategy [15] was adapted.

2 Cross-sectional analysis

The SCM is an Euler-Bernoulli Theory-based approach for the evaluation of compact cross-sections. Under
external loads, a structure will gradually deform until it reaches equilibrium [8]. Once the internal and external
forces are equal, the deformation stops, and, at the cross-section level, is studied by SCM [11]. In this sense, a
description of the uniaxial behavior of the materials must be made for their real representation. In this work the
materials are described as done in Lemes et al. [16].

2.1 Degrees of freedom

ith sub− area

yi
Ai

Φ

ε0

εi

PC
PC

Initial shape Deformed shape

Figure 1. Linear strain field in major axis bending

The discretization shown in Figure 5 is used to find the axial strain, εi , in plastic centroid (PC) of each
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cross-sectional sub-area. Thus, through the material constitutive relationship, it is possible to obtain the respective
stress, σi. In Figure 5, the deformed shape of an I section is illustrated for a combination of normal efforts (axial
force and bending moment). Thus, the axial strain in the ith sub-area can be written as follows:

εi = ε0 +Φxyi +Φyxi + εri (1)

where yi is the distance between the plastic centroids of the analyzed sub-area and the cross section, ε0 is the axial
strain of the PC section, εr is the strain due to residual stress, and Φx and Φy are the curvatures around the main
axis. The variables ε0 and Φ are the strain vector components.

Knowing the strain in each cross-sectional part, it is possible to determine the modulus of elasticity and
the stresses acting on the materials. Thus, it is possible to assemble a system of equations that determines the
cross-sectional balance, as will be discussed in the next subsections.

2.2 Constitutive matrix

The cross-section discretization shown in Figure 1 is very efficient [11] in describing the strain distribution.
It is done to capture the axial strain in the center of each sub-area, and then (through the material constitutive
relations) to obtain the respective stresses. Thus, the axial stress in ith sub-area can be obtained by the Eq.(1).

The cross-sectional deformed shape is calculated by the equilibrium of the external, fext, and internal, fint,
forces that can be numerically expressed by the following non-linear equation:

F (X) =


Next

Mext,y

Mext,x

︸ ︷︷ ︸
fext

−



Nint
∼=

nfib∑
i=1

σ [εi (ε0,Φy,Φx)]Ai

Mint,y
∼=

nfib∑
i=1

σ [εi (ε0,Φy,Φx)] yiAi

Mint,x
∼=

nfib∑
i=1

σ [εi (ε0,Φy,Φx)]xiAi

︸ ︷︷ ︸
fint

=


∆N

∆My

∆Mx

 ∼= 0 (2)

with F and X being the equilibrium force vector and strain vector, respectively, N and M are the forces, and sub-
indexes int and ext are refereed to internal and external variables. All parameters are dependent of the number of
degrees of freedom of the section. Applying the expansion in Taylor series in Eq.(2), results in the following set of
nonlinear equations:

F(X) = F′(X)∆X (3)

where F′ is the Jacobian matrix of the nonlinear problem, that is described as follow:

F′ =

(
− ∂F
∂X

)
=



f11 =
∂Nint

∂ε0
f12 =

∂Nint

∂Φy
f13 =

∂Nint

∂Φx

f21 =
∂Mint,y

∂ε0
f22 =

∂Mint,y

∂Φy
f23 =

∂Mint,y

∂Φx

f31 =
∂Mint,x

∂ε0
f32 =

∂Mint,x

∂Φy
f33 =

∂Mint,x

∂Φx


(4)

2.3 Generalized stiffness parameters

When the cross-section equilibrium is reached, the external and internal forces vectors are numerically equal.
Thus, the deformed shape of the cross-section, described by strain vector X, is found. For this condition, the
parameters of cross-sectional stiffness are determined. In turn, the axial strains in the sub-areas are used to calculate
the Jacobian matrix at this point.

Using the stiffness concept, the differentiation of force by its respective deformation defines the stiffness
of the analyzed degree of freedom. As the problem has three degrees of freedom, in order to obtain the axial
stiffness, the bending moments are kept constant (∆Mx = 0 and ∆My = 0). Therefore, solving the system to
determine the ratio of the force increment ∆N to the axial deformation increment ∆ε defines the axial stiffness
of the section EAT . The same process can be adapted to obtain the flexural stiffnesses EIT,x and EIT,y . The
calculated stiffnesses are presented as follows:
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EIT,y =
∆My

∆Φy
= f33 −

[
f31 (f12f23 − f13f22) + f32 (f21f13 − f23f11)

f11f22 − f12f21

]
(5)

EIT,x =
∆Mx

∆Φx
= f22 −

[
f21 (f13f32 − f12f33) + f23 (f12f31 − f11f32)

f11f33 − f13f31

]
(6)

EAT =
∆N

∆ε
= f11 −

[
f12 (f23f31 − f21f33) + f13 (f32f21 − f31f22)

f22f33 − f23f32

]
(7)

where fij are the constitutive matrix terms defined by Eq. (4)

3 Path-following strategies

In finite element context, the nonlinear static solver consists of obtaining the equilibrium between internal
and external forces for each load increment as described in Eq. (2) and modified as follows [17]:

fext − fint ∼= 0 → (ffix + λfr)− fint ∼= 0 (8)

where ffix is fixed forces vector, λ is the bending moment increment factor and fr is the reference load vector.
To solve the nonlinear problem, load increment and iteration strategies are used.
The initial increase of the load parameter, ∆λ0, is automatically determined by the modified technique of

generalized displacement [18]. Thus, ∆λ0 is calculated as:

∆λ0 = ±∆λ0
1

√√√√∣∣∣∣∣
(
1δXT

r

) (
1δXr

)(
tδXT

r

)
(δXr)

∣∣∣∣∣ = ±∆λ0
1

√
|GSP | (9)

where index 1 indicates the ∆λ0 and δXr (tangential strains) values obtained in the first loading step, and GSP
represents the Generalized Stiffness Parameter.

In the traditional scheme of the Newton-Raphson method, the load parameter λ is kept constant throughout
the iterative process. Thus, the equilibrium path can be obtained until a limit point and/or a bifurcation point is
reached. The variation of λ during the iterative cycle enables the full equilibrium path to be traced. In this work,
the minimum residual displacement norm strategy proposed by Chan [15] was used. In this strategy, the correction
of the load parameter δλk is given by the equation:

δλk = −
(
δXk

r

)T
δXk

g(
δXk

r

)T
δXk

r

(10)

where δXk
g is the displacement vector correction obtained from the Newton-Raphson method application with the

conventional λ increment strategy, and δXk
r is the iterative displacement vector resulting from reference load vector

fr application.

4 Moment-curvature relationship

In this work, the standard Newton-Raphson method and continuation strategy were used to obtain the moment-
curvature relationship. For a fixed value of axial force, N, increments are given in the external bending moment,
M, until the ultimate strain of one of the materials is reached. The process of the moment-curvature relationship
assessment can be seen in Figure 2:

5 Numerical application

Chiorean [10] conducted a study on the influence of residual stress models on the behavior of the steel-
concrete composite section, as depicted in Figure 3. The data regarding the uniaxial behavior of materials can be
seen in [10].

In Figures 4(a) - 4(c), the moment-curvature relationships obtained in this work are described for different
positions of the neutral axis identified as Θ. It is possible to note that for bending about the axes of greater
inertia, using the residual stress models by ECCS [9] and AISC LRFD [8], the results exhibit the same pattern. It is
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Figure 2. Numerical strategy adopted for the iterative-incremental solution

Figure 3. Rectangular composite steel-concrete cross-section

noticeable that, unlike the results presented in Lemes et al. [16], when one of the cross-sectional components of the
material reaches its maximum deformation, the numerical analysis doesn’t halt; instead, it captures the descending
results of the moment-curvature curves.

Additionally, it can be observed that as the value of Θ increases (lowering the neutral axis), the obtained
values of resisting moment decrease.

In Chiorean [19], the same cross-sectional area was also presented to assess the moment capacity contours
for different axial compression load values, with and without the presence of residual stresses.

In Figure 5, it is possible to observe that the results of the present study obtained consistent outcomes with
those found by Chiorean [19]. It is also noticeable the reduction in the resistant capacity of the cross-sectional area
as the axial load increases, especially in the case of the EC3 distribution for residual stresses.

6 Final remarks

This work presented a numerical methodology capable of traversing the critical bending moment to evaluate
the entire moment-curvature relationship.

To achieve this, the techniques of the generalized stiffness parameter [18] and minimum residual displace-
ments [20] were coupled, both adapted to the problem of lateral deformations. In the simulated problems, it is
possible to observe that the presented formulation accurately captures the behavior of the cross-sectional area when
subjected to compressive loads. The choice of applying high loads is due to the occurrence of larger deformations
in the section, causing it to enter the concrete softening regime.
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Figure 4. Moment–curvature analysis for different values of compressive axial loads – major axis bending
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Figure 5. Moment capacity contours with different values of axial compressive load and different residual stress
patterns for encased steel section

Future studies are planned regarding the extension of the proposed approach for the biaxial analysis of
moment-curvature relationships in arbitrary and nonsymmetric reinforced concrete cross-sections. Based on these
advanced trajectory tracking approaches, special cases associated with situations where the origins of reference
axes are outside the so-called load-is contour can be accurately assessed. This allows for the precise revelation of
all key features of the elastoplastic behavior of composite cross-sectional areas.
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