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Abstract. The level of detail on modern geological models requires higher resolution grids that may render the
simulation of multiphase flow in porous media intractable. Moreover, these models may comprise highly heteroge-
neous media with phenomena taking place in different scales. The Multiscale Finite Volume (MsFV) method can
tackle such issues by constructing a set of numerical operators that map quantities from the fine-scale domain to a
coarser one where the initial problem can be solved at a lower computational cost and the solution mapped back
to the original scale. Unlike more traditional techniques like homogenization and upscaling, the MsFV has the ad-
vantage of maintaining the coupling between the scales even when there is no clear scale separation. However, the
MsFV formulation is limited to k-orthogonal grids since it uses a Two-point Flux Approximation (TPFA) method
and employs an algorithm to generate the coarse meshes that is not capable of handling general geometries. The
Multiscale Restriction Smoothed-Basis method (MsRSB) improves on the MsFV by introducing a new iterative
procedure to find the multiscale operators and modifying the algorithm for the generation of the multiscale geomet-
ric entities to accommodate unstructured coarse grids, but is still limited to structured fine grids due to the TPFA
discretization. Finally, the Multiscale Control Volume method (MsCV) replaces the TPFA by the Multipoint Flux
Approximation with a Diamond stencil (MPFA-D) scheme on the fine-scale while further enhancing the generation
of the geometric entities to allow truly unstructured grids on the fine and coarse scales for two-dimensional simula-
tion. In this work we propose an extension to three-dimensional geometries of both the MsCV and the algorithm to
obtain the multiscale geometric entities based on the concept of background grid. We also modify the MPFA-D to
use the very robust Generalised Least Squares (GLS) interpolation technique to obtain the required auxiliary nodal
unknowns. We show that the 3-D MsCV method produces satisfactory results even for heterogeneous and highly
anisotropic media, employing true unstructured grids on both scales to handle the simulation of the steady-state
diffusion equation.
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1 Introduction

The numerical simulation of physical phenomena is a fundamental step to verify and predict how a proposed
model will behave in a real world scenario. In the context of the Finite Volume formulations, this may involve
discrete models whose resolution ranges from 108 to 109, as pointed out by Jaramillo et al. [1]. Moreover, the
study can comprise phenomena happening in different scales and highly heterogeneous media, as it is often the
case for the flow simulation in porous media, discussed by Hajibeygi et al. [2]. For this purpose, scale transferring
techniques are employed. Upscaling techniques can be used to obtain an approximate solution on a lower resolution
grid, as seen in Farmer [3], but may induce to loss of physical characterization. On the other hand, multiscale
methods can keep the coupling between scales through numerical operators.

We turn our attention to the Multiscale Finite Volume (MsFV) family of methods, originally proposed by
Jenny et al. [4]. Within this family of methods, we highlight the Multiscale Restriction-Smoothed Basis (MsRSB)
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by Møyner and Lie [5], who introduce an iterative formulation for the multiscale operators, and the Multiscale
Control Volume (MsCV) by de Souza et al. [6] which improves on the MsRSB by enabling the use of unstructured
grids on all scales for 2-D models. This is done by using a consistent fine-scale flux approximation in the form of
the Multipoint Flux Approximation with a Diamond stencil from Contreras et al. [7], and modifying the multiscale
pre-processing algorithm.

In this work, we propose an extension of the MsCV to 3-D geometries coupled with the 3-D MPFA-D from
de Lira Filho et al. [8] and the robust GLS interpolation introduced by Dong and Kang [9]. In order to generate the
multiscale geometric entities, we also extend the background grid framework proposed by de Souza et al. [10] to
3-D geometries. Finally, we introduce an enhanced version of the 3-D MsCV, the E-MsCV, by incorporating the
preconditioning technique from the E-MsRSB by Bosma et al. [11] to the definition of the multiscale operators.

2 Mathematical formulation

The 3-D steady-state diffusion equation in anistropic and heterogeneous media is given by:

∇ ·
−→
F = Q(−→x ),with

−→
F = −

˜
K(−→x )∇u for −→x ∈ Ω ⊂ R3, (1)

where
−→
F is a diffusive flux, u is a scalar field,

˜
K(−→x ) is a diffusion tensor, and Q(−→x ) is the source term.

Typical boundary conditions for eq. (1) are:

u = gD for −→x ∈ ΓD, (2)

−→
F (−→x ) · −→n = gN for −→x ∈ ΓN , (3)

where ∂Ω = ΓD ∪ ΓN , ΓD and ΓN represent the Dirichlet and Neumann boundaries, respectively, such that
ΓD ∩ ΓN = ∅, and −→n is the unit outward normal vector.

3 Numerical formulation

Equation (1) is discretized using the Multipoint Flux Approximation with a Diamond stencil (MPFA-D) by
de Lira Filho et al. [8], a full pressure support Finite Volume scheme for 3-D tetrahedral meshes. Given the
arrangement shown in Fig. 1, the flux through the internal face IJK is approximated by:

−→
F R̂ ·

−→
N IJK ≈ −Kn

eff

[
2(uR̂ − uL̂)−DJI(uI − uJ)−DJK(uK − uJ)

]
, (4)

where
−→
N IJK is a normal vector to the face IJK, Kn

eff is the face transmissibility, DJI and DJK are the cross
diffusion terms, uR̂ and uR̂ are the cell centered unknowns, and uI , uJ and uK are vertex centered unknowns.

P Q
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J
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R̂L̂
hR̂

×

Figure 1. Two tetrahedra R̂ and L̂ sharing a face IJK illustrating the main entities in the MPFA-D scheme.
Adapted from de Lira Filho et al. [8].

3.1 Boundary conditions

For faces on the Dirichlet boundary, the flux term is defined as:
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−→
F R̂ ·

−→
N IJK ≈ −

[
2
Kn

R̂

hR̂

(uR̂ − gDJ ) +DJI(g
D
J − gDI ) +DJK(gDJ − gDK)

]
, (5)

where gDI , gDJ and gDK are the prescribed values on the boundary. On the Neumann boundary, the boundary
conditions are given by:

−→
F R̂ ·

−→
N IJK = gN . (6)

For a more detailed explanation on the construction of the flux approximation, refer to de Lira Filho et al. [8].

3.2 Vertex unknowns interpolation

As it can be seen from Equation (4), the MPFA-D’s unique flux expression, apart from the cell unknowns,
includes vertex unknowns that must be eliminated in order to obtain a completely cell-centered approximation.
This can be achieved by rewriting the vertex variables as a linear combination of the surrounding cell-centered
values:

uv =

nk∑
k̂=1

ωk̂uk̂. (7)

Here, we have opted to use the Global Least Squares (GLS) interpolation by Dong and Kang [9]. It is a
linear-preserving interpolation technique capable of handling heterogeneous and highly anisotropic media while
maintaining a good convergence rate as discussed by de Moura Cavalcante [12]. The weights in the GLS interpo-
lation are computed via the solution in the least squares sense of a set of local problems for each node. For a more
intricate discussion of the assembly and definition of the local problems to find the interpolation weights, refer to
Dong and Kang [9].

4 The 3-D Multiscale Control Volume method

4.1 The MsCV framework

The Multiscale Control Volume (MsCV) method, as originally proposed by de Souza et al. [6] for 2-D models,
is a multiscale formulation that constructs an approximation of the solution on the fine-scale via two operators: the
prolongation operator P and the restriction operator R. Let u and uc denote the fine-scale and the coarse-scale
solutions, respectively, and the fine-scale system of equations Au = q. The MsCV approximation is given by:

u ≈ ums = Puc. (8)

The coarse-scale solution is found by solving the coarse-scale system of equations Acuc = qc such that Ac =
RAP and qc = Rq.

In order to properly define the MsCV operators, some geometric entities must be generated. Given the fine-
scale grid Ωf , first, the primal coarse grid (ΩP

c ) is formed by partitioning the fine-scale grid into coarse blocks.
For this grid, centers are also defined as the fine-scale volumes whose centroids are the closest to the primal coarse
volume’s centroid. A dual coarse grid (ΩD

c ) is also generated as way to impose mass conservation on the coarse
scale. Moreover, for each primal coarse volume, a support region is delimited as its region of influence, i.e., where
its basis function is non-null. In the proposed framework, all these entities are generated using a background grid
Ωbg , concept first introduced in the multiscale context by de Souza et al. [10]. The aforementioned entities are
illustrated in Fig. 2.

4.2 The MsCV operators in 3-D

The MsCV prolongation operator is computed through an iterative procedure based on the Multiscale Re-
striction Smoothed Basis (MsRSB) method proposed by Møyner and Lie [5]. The operator’s basis functions are
updated through a series of weighted Jacobi iterations of the form:
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(a) The primal coarse grid ΩP
c . (b) The dual coarse grid ΩD

c (red). (c) An example of support region Ij
(dark and light blue), its boundary Bj

(green) and the intersection with other
boundaries (orange).

Figure 2. Illustration of the MsCV geometric entities.

Pn+1
j = Pn

j − ωD−1AprePn
j . (9)

where ω is the relaxation parameter of the Jacobi iteration set to 2/3, D−1 is the inverse of the main diagonal
of the preconditioned MPFA-D left-hand side term, and Apre is the preconditioned MPFA-D matrix. Here, the
preconditioned matrix is a direct application of the technique described by de Souza et al. [6] and is given by:

Apre
ij =

{
Aij if i ̸= j

Aii −
∑nf

k=1 Aik otherwise
. (10)

A more intricate discussion of iterative procedure can be found in de Souza et al. [6] and Alves et al. [13].
Finally, for the restriction operator, we use the Finite Volume restriction operator from Jenny et al. [4] defined

as:

Rij =

{
1 if Ωf,j ∈ ΩP

c,i

0 otherwise
. (11)

4.3 The Enhanced MsCV (E-MsCV)

As discussed by [11], the MsRSB prolongation operator may show slow convergence when applied to non
M-matrices. To overcome this issue, a modification to the fine-scale matrix is suggested so that the M-matrix
properties are reinforced, making the convergence rate of the method closer to when it is applied to a TPFA matrix.

The 3-D MsCV presents the same convergence issues. Since the MsCV prolongation operator is based on
the MsRSB, it is natural to consider the application of the aforementioned procedure to our new framework. We
designate this modified version of the MsCV the Enhanced MsCV (E-MsCV). The preconditioning technique
applied is defined as:

A∗
ij = min (Aij , 0) for i ̸= j, (12)

Apre
ij =

{
A∗

ij if i ̸= j

A∗
ii −

∑nf

k=1 A
∗
ik otherwise

. (13)

5 Numerical results

In this section, we present an example to illustrate a simulation performed using both the 3-D MsCV and the
E-MsCV. To compare the quality of the solutions, the following error norms were used:
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||uref − ums||2 =

(∑
Ωi∈Ωf

|uref
i − ums

i |2∑
Ωi∈Ωf

|uref
i |2

)1/2

, (14)

||uref − ums||∞ =
maxΩi∈Ωf

|uref
i − ums

i |
maxΩi∈Ωf

|uref
i |

, (15)

where the superscripts ms and ref correspond to the multiscale solution and the reference fine-scale solution,
respectively.

We study the simulation of a single-phase flow in a reservoir with a spherical heterogeneity within the domain
Ω = [−2, 2]3. The following boundary conditions are applied:


gD = 0 on ΓD,1

gD = 1 on ΓD,2

gN = 0 on ΓN

, (16)

where ΓD,1 corresponds to the planes x = −2, ΓD,2 corresponds to the plane x = 2, and ΓN is set at the planes
y = −2, y = 2, z = −2 and z = 2.

The heterogeneity region is shaped as a sphere centered at the origin with a radius equal to 0.75 embedded in
a homogeneous domain with a permeability tensor given by:

˜
K1(x, y, z) =

1 0 0
0 1 0
0 0 1

 . (17)

Two configurations were simulated, a barrier and a channel, with permeability tensors respectively given by:

˜
K2(x, y, z) =

10−3 0 0
0 10−3 0
0 0 10−3

 , (18)

˜
K3(x, y, z) =

103 0 0
0 103 0
0 0 103

 . (19)

The simulations were conducted in a fine-scale grid with 159,893 tetrahedral cells and the multiscale grids were
generated using a structured 6× 6× 6 hexahedral background grid.

(a) Barrier configuration. (b) Channel configuration.

Figure 3. Fine-scale reference solutions for the single-phase simulation of a reservoir containing a spherical het-
erogeneity under a barrier (a) and channel (b) configuration. Slice at y = 0.

The multiscale solutions are presented in Fig. 4 for each MsCV formulation and each configuration. For the
channel setup, the solutions remain qualitatively close to the fine-scale reference solution shown in Fig. 3b. The
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Table 1. The L2 and L∞ norms of the errors for the simulation of a reservoir containing a spherical heterogeneity.

Channel Barrier
Error (%)

MsCV E-MsCV MsCV E-MsCV

||u||2 0.69 0.59 7× 108 6.02

||u||∞ 18.79 19.04 5× 107 83.78

(a) Channel configuration, MsCV solution. (b) Channel configuration, E-MsCV solution.

(c) Barrier configuration, MsCV solution. (d) Barrier configuration, E-MsCV solution.

Figure 4. The multiscale solutions for different configurations for the spherical heterogeneity. Slice at y = 0.

errors in Table 1 corroborate with the observation, as the L2 norm of the error is approximately 0.6% for both the
3-D extension of the MsCV and the E-MsCV despite considerable values for the L∞ norm of the errors.

Regarding the iterative performance of the multiscale methods, the original MsCV’s iterations present a
slower convergence rate and did not converge on the prescribed tolerance criterion equal to 10−3, requiring to stop
the iterative procedure after 500 iterations to achieve a result with errors of the same magnitude as those presented
by the E-MsCV, which in turn took 132 iterations.

In a barrier configuration, the solution using the original MsCV preconditioning fails to converge regardless
of the background grid used. On the other hand, the E-MsCV converges. Albeit not able to fully capture the barrier
in the reservoir, the E-MsCV’s solution still manages to reasonably show its main features on both background
grids and it is a good initial guess for a smoothing procedure. As seen in Table 1, the L2 norm of the errors on the
solution using the E-MsCV are still satisfactory even though the L∞ norm of the error is very high.

6 Conclusions

In this work, we have proposed a 3-D extension and an enhance version of the MsCV method. From our
experiments, the 3-D MsCV is capable of approximating the reference fine-scale solution to a good degree on
low to intermediate complexity scenarios and the E-MsCV is able to converge on more challenging scenarios. It
was also possible to notice that, despite of the robustness of the MPFA-D with the GLS interpolation, there are
violations of the DMP which are exacerbated in the multiscale solution. In the near future, we intend to explore new
approaches to generate the multiscale geometric entities under the background grid framework by adapting them
to the underlying geological characteristics, to study smoothing techniques and to investigate algebraic multiscale
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strategies in place of the MsRSB. Furthermore, we also intend to address the DMP violation issue by introducing
a defect correction scheme similar to the one proposed by [14, 15] and to expand the work to the simulation of
multiphase flows in heterogeneous and anisotropic porous media.
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