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Abstract. This work extends on Durán et al. [1] to propose a multiscale locally conservative finite element method
for the simulation of flow in fractured porous media. The method employs H(div)-confirming flux approximations
that carry advantages such as the ability to solve problems with nearly incompressible materials, better accuracy
for the velocity field approximation, fewer requirements on the regularity of the solution, and continuity of the
normal velocity between elements. The last of these leads to locally conservative approximations of the velocity
field, which is considered paramount in the area of reservoir simulation. The flow in the porous media is modeled
using traditional Darcy’s law, and the coupling with the fracture flow is modeled with the Discrete-Fracture-Matrix
representation, where the fractures are idealized as lower-dimensional elements at the interface of matrix elements.
The method is applied to a benchmark problem of a complex reservoir with several fractures.
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1 Introduction

More than half of the oil reservoirs in the world are fractured (Schlumberger [2]). These fractures are paths of
high conductivity that can strongly affect the flux pattern in the porous media. Consequently, the recent decade has
observed increasing trends of research into flow in fractured porous media (see reviews by [3, 4]). This is primarily
motivated by subsurface processes as in the case of fractured porous media but also stems from research in other
fields such as materials science and biological applications [5]. Therefore, being able to accurately simulate fluid
flow in fractured porous media can be of great value to the field.

This article presents a multiscale, locally conservative methodology to simulate flow in fractured porous
media. The flow in the porous media is assumed to be governed by traditional Darcy’s law and the coupling
with the fractures is based on the Discrete-Fracture-Matrix method, where the fractures are represented by two-
dimensional entities at the interface of bulk matrix three-dimensional entities. A form of Darcy’s law is adopted
for the flux inside the fractures where the permeability is based on the fracture opening. The governing equations
are solved using the Mixed Finite Element Method where the fluxes are approximated using H(div) approximation
spaces. This method leads to locally conservative approximations with optimal flux accuracy. Additionally, the
Multiscale Hybrid-Mixed Method (MHM) is used where the problem domain is divided into macro domains and
the global system of equations is mostly composed of degrees of freedom related to the normal flux between these
macro domains. Lastly, a mesh generator tailored for generating multiscale DFM meshes is presented.

2 Methodology

In this section, the governing equations for fluid flow in fractured porous media are presented. The FEM
adopted to discretize these equations and a new methodology to generate meshes that are tailored for this problem
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are also briefly presented. More details can be found in Durán et al. [1], Berre et al. [4] and Lima [6].

2.1 Strong form of the governing equations

The discrete-fracture-matrix model considers flow both in the fractures and in the surrounding porous media.
With a steady-state, incompressible, single-phase flow described by Darcy’s law, the boundary value problem for
flow in the porous matrix can be stated as:

Find the fluid velocity u3 and the hydraulic head p3 that is the solution of the following system of Partial
Differential Equations:


K−1

3 u3 + ∇p3 = 0 in Ω3

∇ · u3 = 0 in Ω3

p3 = p3D
on ∂Ω3D

u3 · n3 = u3N
on ∂Ω3N

, (1)

where K3 is the hydraulic conductivity, Ω3 is the reservoir domain, ∂Ω3D
is the part of the domain boundary with

imposed hydraulic head p3D
, ∂Ω3N

is the part of the domain boundary with imposed normal velocity u3N
, and n3

is the outward normal on ∂Ω3N
.

Similarly, the following governing equations hold for fluid flow inside the fracture:


1
a2
K−1

2 u2 + ∇p2 = 0 in Ω2

∇ · u2 −
∑

u3 · nΓ2
= 0 in Ω2

p2 = p2D
on ∂Ω2D

u2 · n2 = u2N
on ∂Ω2N

, (2)

where K2 is the fracture pseudo-permeability, a2 is the fracture opening, u2 is the fluid velocity inside the fracture,

p2 is the fluid hydraulic head inside the fracture, Ω2 is the fracture cavity domain, ∂Ω2D
is the part of the frac-

ture domain boundary with imposed hydraulic head p2D
, ∂Ω2N

is the part of the fracture domain boundary with
imposed normal velocity u2N

, n2 is the outward normal on ∂Ω2N
, and nΓ2 is the outward normal on the fracture

faces.
Additionally, at the interface between the reservoir matrix and fracture faces the pressure gradient can be

approximated as (p2 − p3)/a2. Then, the following relation holds at the interfaces (Berre et al. [4]):

u3 · n + 2
Keq

2

a2
(p2 − p3) = 0 on Γ2, (3)

where Keq
2 is the fracture equivalent tangential permeability, and Γ2 is the fracture surface (faces).

2.2 Mixed Finite Elements discretization

Equations eq. (1) and eq. (2) are approximated using the Mixed Finite Element Method (MFEM) described in
Castro et al. [7]. The MFEM is a type of Finite Element technique where both the state variable and flux fields are
solved as unknowns of the problem. In the case of porous media flow, this translates to the hydraulic head (state
variable) and the velocity field (flux). Compared to the traditional Finite Element Method (FEM), the MFEM
carries advantages such as the ability to solve problems with nearly incompressible materials, better accuracy for
the velocity field approximation, less requirements on the regularity of the solution, and continuity of the normal
velocity between elements. The last of these leads to locally conservative approximations of the velocity field,
which is considered paramount in the area of reservoir simulation. Details on the adopted MFEM can be found in
Durán et al. [1], Castro et al. [7], Devloo et al. [8].

2.3 The Multiscale Hybrid-Mixed Method

The Multiscale Hybrid-Mixed Method (MHM) is a methodology tailored to tackle problems that have strongly
varying material properties. It uses a divide-and-conquer strategy to partition the mesh into so-called macro do-
mains. For each macro domain, different discretization techniques can be adopted. The contributions of each
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macro domain are then condensed into an approximation space defined in the interface between macro domains,
leading to a global system of equations with reduced size. A noteworthy feature of the method is that each macro
domain is independent and, therefore, can be solved in parallel in a multi-core computer. An illustration of an
MHM mesh with four macro domains is shown in Figure Fig. 1. More details on the MHM can be found in Durán
et al. [1].

Figure 1. Example of MHM coarse and fine meshes. The coarse mesh is composed of 4 quadrilateral elements and
each macro element has a 4x4 uniform refinement leading to 16 quadrilateral microelements. The global system is
only composed of normal macro fluxes at the interfaces and constant pressure at each macro element.

2.4 DFNMesh: A Discrete-Fracture-Matrix mesh generator

In this work, a mesh generator that is tailored for DFM problems discretized with multiscale methodologies is
used (Lima et al. [9]). This mesh generator is based on the iterative refinement of an initial coarse mesh composed
of convex polyhedra to obtain a mesh that conforms with the location of the fractures in the domain. The method
can handle the complete multi-dimensional domain from the tridimensional porous rock matrix, through fracture
surfaces, down to open curves for fracture-fracture intersections. The main steps involve: intersect edges by
checking for nodes on opposite sides of the fracture plane, extend intersections from edges to faces, coalesce
intersections to closest existing nodes (given a tolerance), refine interface elements to conform to the fracture,
identify subsets of fracture surface, mesh the surface, and locate boundaries and intersections where they arise.
Finally, the space around fractures is filled with the fine-scale unstructured mesh, which is kept conformal. The
coalescence of intersections to closest existing nodes is performed based on two criteria:

1. Points closer than a tolerance to existing points are rejected/snapped: Intersection points are only created
in intersected edges. Hence, this tolerance check is simply a measurement of the distance of the intersection
point to both nodes of the 1D side. If any distance is smaller than the tolerance, the point is discarded for the
closest node. This tolerance is referred to as εd.

2. Angle below a tolerance: Within the domain of the skeleton mesh, the angles an intersecting fracture
creates (as it refines necessary elements) are the internal angles of the sub-elements. All these angles are
checked against a tolerance. To impose this tolerance, note that all sub-elements have at least one corner
defined by one of the intersection points the fracture plane has created at an edge of its father. If any internal
angle violates the tolerable angle, it is enforced by coalescing the intersection point to a corner of the father
element. This tolerance is referred to as εα.

The entirety of the DFNMesh code is written in C++ and hosted open-source at https://github.com/
labmec/DFNMesh. It largely relies on two other open-source finite element libraries: NeoPZ ([10]) and Gmsh
([11]).
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3 Example

3.1 Benchmark problem with 52 fractures

This test is designed to test a DFM simulator’s robustness in the presence of a large number of fractures. The
problem domain is defined on Ω = [−500 m, 350 m] × [100 m, 1500 m] × [−100 m, 500 m] and 52 fractures are
present as illustrated in Figure 2.

(a) Problem domain, part of the boundary with imposed
flow (blue), and part of the boundary with imposed pres-
sure (purple). This figure is adopted from [4].

(b) Initial coarse mesh adopted for the DFNMesh algo-
rithm.

Figure 2. Illustration of problem domain and initial coarse mesh for Benchmark Problem.

A constant entering flux of u2N
= −1.0 m/s is imposed at ∂Ω2N,1

= {(x, y, z) ∈ ∂Ω : (−500 m,−200 m)×
{1500 m}× (300 m, 500 m)} and ∂Ω2N,2

= {(x, y, z) ∈ ∂Ω : {−500 m}× (1200 m, 1500 m)× (300 m, 500 m)},
and a condition of p3 = 0 m is imposed at ∂Ω2D,1

= {(x, y, z) ∈ ∂Ω : {−500 m} × (100 m, 400 m) ×
(−100 m, 100 m)} and ∂Ω2D,2

= {(x, y, z) ∈ ∂Ω : {350 m} × (100 m, 400 m) × (−100 m, 100 m)}. Zero flux
is applied to the remaining part of the boundary of the 3D reservoir domain. The adopted material properties are
K3 = Im/s, where I is the identity matrix, K2 = 100 Im3/s, Keq

2 = 104 m/s, and a2 = 10−2 m.

Mesh generation

Three different meshes were generated using the DFNMesh algorithm applied to the initial coarse mesh
shown in Figure 2 and different snapping tolerances. It is noted that the initial mesh is more refined on the back
due to high concentration of fractures in that region. The cases are denoted A, B, and C with the tolerances
adopted shown in Table 1. The generated meshes are shown in Figure 3. What can be clearly seen is that case A
most accurately represents the problem geometry, and cases B and C progressively less accurately represent the
geometry of the fractures.

The gradually stronger imposition of geometrical tolerances from cases A to C induces an improvement in
mesh quality. Figure 4 collects gamma quality distribution in histograms for each of the tolerance cases, and shows
the trend of mesh improvement as feature rejection gets more aggressive.

Table 1. Snapping tolerances adopted for each case considered in the analysis of Benchmark Problem.

Case εd εα

A 1× 10−1 1.5× 10−2

B 4.5× 10−1 2.75× 10−1

C 5× 10−1 3× 10−1
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(a) case A: 3D domain mesh (b) case A: 2D fracture mesh

(c) case B: 3D domain mesh (d) case B: 2D fracture mesh

(e) case C: 3D domain mesh (f) case C: 2D fracture mesh

Figure 3. Finite element meshes used in the analysis of benchmark problem. The 3D domain meshes are shown
in the left column and the 2D meshes representing the fractures are shown in the right column. Four cases are
considered where different snapping tolerances are adopted. Case A adopts tolerances that lead to the most accurate
representation of the problem geometry and case C adopts tolerances that lead to the less accurate representation
of the problem geometry.

Results

In [4], a plot of the hydraulic head along a line passing through (350 m, 1500 m, 500 m) and (−500 m, 100 m,−100 m)
is chosen as the parameter for comparison of different discretization techniques. In Figure 5, the results obtained
in [4] are compared with the results of the MFEM adopted in this work in conjunction with the three meshes
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(a) case A: Mesh quality distribution
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(b) case B: Mesh quality distribution
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Figure 4. Histograms for distribution of element gamma quality in fine meshes of benchmark problem created
for each case of geometrical tolerances. Elements are grouped by ranges of 0.05 gamma values and presented
in percentage. Three cases are considered where different snapping tolerances are adopted. Case A adopts toler-
ances that lead to the most faithful representation of the problem geometry and less snapping of features. Case C
coalesces a higher number of features, which improves gamma quality but distorts the mesh away from user input.

presented in Section 3.1. The results obtained by the MFEM using the meshes of cases A, B, and C are within
the range of the benchmark results by other methods, demonstrating that the meshes generated by the DFNMesh
algorithm can generate consistent results regardless of the snapping tolerances chosen even for a problem with a
large number of fractures.
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Figure 5. Comparison of matrix hydraulic head over line through domain between the four meshes adopted using
the MFEM and other methods available for Benchmark Problem (Berre et al. [4]).

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023



N. Shauer, P. Lima, J. Villegas, P. Devloo

4 Conclusions

A multiscale, locally conservative methodology to simulate flow in fractured porous media is presented where
the global degrees of freedom are mostly due to normal fluxes between macro domains. The methodology has the
computational advantage that each macro domain can be solved independently, leading to a high degree of par-
allelization. A mesh generator tailored to generate meshes for this multiscale method is also shown which is
open-source and can be readily downloaded from Github. This mesh generator lets the user decide how much
degree of geometric fidelity they require. Nevertheless, the obtained results, even for less geometrically accurate
meshes, are well within the acceptable range. These less geometrically accurate meshes have the benefit of pos-
sessing more well-behaved elements with better aspect ratios that can decrease numerical instability issues caused
by deteriorated conditioning of the stiffness matrices.
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