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Abstract. Reservoir simulation is an important tool for the prediction of oil and gas production. However, some
physical phenomena were either neglected or oversimplified in the simulations, in order to facilitate the process
of developing a simulation tool to analyze the fluid flow within the rock reservoir. One such phenomenon is the
mechanical behavior of the reservoir and surrounding rocks, and how it affects rock properties, and consequently,
the fluid flow behavior through the porous media, which, in turn, influences its mechanical behavior, since fluid
pressure contributes to the rock deformation. These effects are well observed in wellbore stability and reservoir
subsidence, as both can severally change the production behavior, if not considered. In this work, Biot’s theory of
consolidation is used to derive the governing equations of both the process of rock deformation and fluid flow in
the porous rock and their coupling. In the petroleum reservoir community, usually, these problems are solved using
different numerical methods: The Finite Element Method (FEM) is used for the geomechanics problem while the
Finite Volume Method (FVM) is employed for the fluid flow problem. However, in the present paper, we propose
a full finite volume formulation for both problems based on the use of the Multi-Point Flux Approximation using
Harmonic Points (MPFA-H), which was extended to handle the geomechanical problem. The MPFA-H method is
very robust and flexible. Using the same basic strategy for both problems has the advantage of producing a locally
conservative formulation, which is important for multiphase flow modeling, and the use of the same data structure
which eases the simulation tool development, is expected to increase numerical stability, accuracy, and simulation
speed. We use a sequential solution method in which the equations for solid deformation and fluid flow are solved
separately and the solutions of each problem exchange information in all time steps, using the fixed-strain split.
The solutions obtained with the strategy described are verified using benchmarks found in literature.

Keywords: Finite Volume Method, Multipoint flux approximation, Poroelasticity, Reservoir Simulation, Geome-
chanics.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023



Template file for CILAMCE-2023 full-length paper (enter here with the short title of your paper)

1 Introduction

In the context of Petroleum Reservoir Engineering, phenomena such as borehole collapse and ocean floor
subsidence highlighted the necessity to understand how oil production affects the reservoir and surrounding rocks
and vice-versa [1]. Those phenomena can impact significantly production behavior which can lead to profit losses
and environmental hazards. The presence of a freely moving fluid in a porous rock modifies its mechanical re-
sponse, which in return, influences the fluid flow inside the pore. This relationship is modelled via the theory of
Poroelasticity. In modelling each phenomenon separately, different numerical methods are typically used. For fluid
flow inside a porous media, a Finite Volume Method (FVM) is predominately used. On the other hand, in solid
deformation problems, a Finite Element Method (FEM) is predominately employed. Using a standard FEM-FVM
scheme has several disadvantages due to the different data structures and can even suffer from non-physical oscil-
lations [2] However, in the present work, we propose a unified Finite Volume Framework based on the Multipoint
Flux Approximation based on Harmonic Points (MPFA-H)[3, 4], which is very robust and flexible. The MPFA-H
is a linear Finite Volume capable of dealing with unstructured polygonal meshes and full diffusion tensors [3, 4].
This unified FVM scheme has several advantages due to the usage of the same data structure and the avoidance of
unnecessary interpolations, which is expected to yield faster, more accurate and more stable simulations.

2 Mathematical Model

The mathematical model used in the present work is based on Biot’s Theory of consolidation, and it’s given
by the following set of PDE’s[5]:

∇ · σ′ − α∇p =
−→
f . (1)

S
∂p

∂t
+∇ ·

(
−→vt + α

∂−→u
∂t

)
= Qf . (2)

where: σ′ is the Effective Cauchy Stress Tensor, α is Biot’s coefficient, p is the fluid pressure,
−→
f comprises body

forces. S = ϕcf + (α− ϕ) cs with ϕ is the porosity of the porous media, cf is the fluid compressibility, cs is the
solid particle compressibility. −→vt is the fluid’s Darcy Velocity, −→u is the displacement vector, and Qf is the source
(or sink) term. By assuming linear elasticity and infinitesimal strain, the stress-displacement relationship is given
by [6]:

σ′ = C :
∇−→u + (∇−→u )

⊤

2
. (3)

where C is the stiffness tensor. Moreover, the relationship between the fluid Darcy Velocity and the Fluid pressure
is given by Darcy’s Law[7]:

−→vt = − 1

µ
K∇p. (4)

.
A proper set of initial and boundary conditions is given by:

−→u (x, t) = −→g u
D in Γu

D, σ′ · −→n = −→g u
N in Γu

N , −→u (x, 0) = −→u 0 in Ω

p (x, t) = gpD in Γp
D, −→vt · −→n = gpN in Γp

N , p (x, 0) = p0 in Ω.
(5)

where −→n is the unit outward normal vector to the boundary. The superscript u and p refer, respectively, to the stress
equilibrium, eq. (1), and to the storage equation, eq. (2). ΓD denotes the Dirichlet Boundary, with −→g D being the
prescribed value at the the Dirichlet Boundary. ΓN denotes the Neumann Boundary, with −→g Nbeing the prescribed
value at Neumann Boundary. −→u 0 and p0 are the initial displacement and pressure distributions, respectively.

3 Finite Volume Discretezation of Biot Equations

3.1 The MPFA method

This work uses a collocated cell-centered finite volume scheme. The first step is to split the computational
domain Ω into Ncv computational cells L̂. Then, eq. (1) and eq. (2) are integrated in the computational cell.
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By integrating the stress divergent, the first term in eq. (1), over the cell L̂, and applying the Divergence and
Mean Value theorems, we have:∫

ΩL̂

∇ · σ′ dΩL̂ =

∫
ΓL̂

σ′ · −→n dΓL̂ =
∑

IJ∈ΓL̂

∫
IJ

σ′ · −→n ds. (6)

∫
IJ

σ′ · −→n ds ≈ |IJ |σ′ · −→n IJ = |IJ |
−→
T IJ . (7)

where ΩL̂ is the computation cell domain, ΓL̂ is the computational cell boundary, IJ being the computational
cell control surface (edge in 2D), with |IJ | being its size and −→n IJ being the unit outward normal vector to IJ .
Furthermore,

−→
T IJ = σ′ · −→n IJ is known as the traction vector. The traction vector can be written as follows:

−→
T IJ =

[
C :

∇−→u +∇−→u ⊤

2

]
· −→n IJ =

∇u · Cxx−→n IJ +∇v · Cxy−→n IJ

∇u · Cyx−→n IJ +∇v · Cyy−→n IJ

 . (8)

where Cxx, Cxy , Cyx, Cyy are diffusion coefficients constructed from C. Therefore, Cxx−→n IJ , Cxy−→n IJ , Cyx−→n IJ ,
Cyy−→n IJ are co-normal vectors. Thus, ∇u·Cxx−→n IJ , ∇v ·Cxy−→n IJ , ∇u·Cyx−→n IJ and ∇v ·Cyy−→n IJ are diffusion
terms that can be approximated via the Multipoint Flux Approximation based on harmonic points (MPFA-H) as it
is defined in Contreras et al. [4]. Detailed information on how the harmonic interpolation is defined for the linear
elasticity problem can be found in [8]. The second term of eq. (2) is also approximated via the MPFA-H method.
Detailed information on how the harmonic interpolation is defined for fluid flow problems can be found in [4].

3.2 Time Integration

The numerical integration in the proposed scheme is done via the Implicit Euler Method:∫
ΩL̂

S
∂p

∂t
dΩL̂ ≈

VL̂SL̂

∆t

(
pn+1

L̂
− pn

L̂

)
. (9)

∫
ΩL̂

α

∂t
(∇ · −→u ) dΩL̂ ≈

VL̂αL̂

∆t

(
∇ · −→u

∣∣∣n+1

L̂
−∇ · −→u

∣∣∣n
L̂

)
. (10)

where VL̂ is the computational cell volume(area in 2D). The superscript n + 1 and n refer, respectively, to tn+1

and tn, with tn+1 = tn +∆t. All other terms in eq. (1) and eq. (2) are evaluated at tn+1.

3.3 Pressure-Displacement Coupling

Both the pressure gradient in eq (1) and the displacement divergent in eq (2) are approximated by integrating
both terms and then applying the Divergence and Mean Value Theorems:∫

ΩL̂
∇p dΩL̂ ≈

∑
IJ∈ΓL̂

|IJ |pIJ−→n IJ ,
∫
ΩL̂

∇ · −→u dΩL̂ ≈
∑

IJ∈ΓL̂
|IJ |−→u IJ · −→n IJ . (11)

where pIJ and −→u IJ are computed in their respective harmonic points.
The coupling between pressure and displacement is done via the Fixed-Strain Operator Split [9]. At each

time step, the solution is obtained by first solving the fluid-flow problem with constant volumetric deformation
rate, eq. (10), then the solid mechanics problem is solved with a frozen pressure field. This cycle repeats until
convergence is achieved. This choice of the operator split was based on the ease of implementation and natural
migration towards a better operator split, the Fixed-Stress Split. The Fixed-Strain split is conditionally stable [9].

4 Numerical Results

4.1 Terzaghi’s Problem

Terzaghi’s Problems consists of a homogeneous poroelastic column with height H and length L, where, at
its top, a load σ0 is applied and drainage occurs [10]. Its sides are impermeable and are prevented from lateral
movement. Its bottom portion is fixed and also impermeable. Thus, the column has a displacement only in
the vertical direction. The analytical solution for this problem can be found in Wang [10]. The meshes used
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to solve this problem are shown in Figure 1. Material properties can be found in Table 1. The load applied is
σ0 = −1× 106 Pa.

Figure 1. Terzaghi’s Problem - a) Problem schematic b) Mesh 1 - unstructured with triangular elements; c) Mesh
2 - unstructured with quadrilateral elements.

Table 1. Terzaghi’s Problem - Solid and fluid properties.

Property Value

Solid Compressibility (cs) 2.777778× 10−11 Pa−1

Young’s Modulus (E) 14.4× 109 Pa

Poisson’s Coefficient (ν) 0.2

Porosity (ϕ) 0.19

Permeability (k) 1.9× 10−15 m2

Biot’s Coefficient (α) 0.777778

Fluid Compressibility (cf ) 3.030303× 10−10 Pa−1

Viscosity (µ) 1× 10−3 Pa.s

Figure 2 and Figure 3 shows a comparison between the numerical and analytical solutions with a ∆t = 1 s.
From their analysis, one can conclude that the numerical formulation presented in this work is capable of accurately
match the problem’s analytical solution, with both unstructured triangular and quadrilateral meshes. Figure 4 shows
the displacement field expected behavior. The displacement is only vertical and it is bigger closer to the top, where
the load is applied.

Figure 2. Terzaghi’s Problem - Comparison between analytical and numerical solutions for Mesh 1.
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Figure 3. Terzaghi’s Problem - Comparison between analytical and numerical solutions for Mesh 2 .

Figure 4. Terzaghi’s Problem - Displacement profiles at different times.

4.2 Mandel’s Problem

Mandel’s Problem consists of a porous media, with height 2H and length 2L, sandwiched between two
frictionless, impermeable plates [11]. A vertical force 2F is applied at the plates and the sample is drained from
the sides, where it is free to deform. Due to the symmetry of the problem, the computational domain can be reduced
as shown in Figure 5. The analytical solution can be found in Abousleiman et al. [11]. A structured quadrilateral
mesh with a resolution of 30x6 was used in the simulation. The force applied is F = −1 × 106N . Material
properties can be found in Table 2.

Figure 5. Mandel’s Problem - Domain Reduction.
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Table 2. Mandel’s Problem - Solid and fluid properties.

Property Value

Solid Compressibility (cs) 0 Pa−1

Young’s Modulus (E) 5× 109 Pa

Poisson’s Coefficient (ν) 0.3

Porosity (ϕ) 0.3

Permeability (k) 1× 10−13 m2

Biot’s Coefficient (α) 1

Fluid Compressibility (cf ) 4.5× 10−9 Pa−1

Viscosity (µ) 1× 10−3 Pa.s

Figure 6 shows a comparison between the numerical and analytical solutions for Mandel’s Problem. Figure
7 shows the pressure profiles at times t = 10, t = 75, t = 200, t = 500. Figure 8 shows the displacement
distributions at time t = 500 s. From Figure 6, one can conclude that the numerical method is capable of producing
accurate solutions for the problem simulated.

Figure 6. Mandel’s Problem - Comparison between analytical and numerical solutions with ∆t = 1 s.

Figure 7. Mandel’s Problem - Pore pressure distribution at different times with ∆t = 1 s.
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Figure 8. Mandel’s Problem - Displacement field at t = 500 with ∆t = 1 s.

5 Conclusions

In the present paper, we present a unified Finite Volume Framework for solving poroelasticity problems based
on the Multipoint Flux Approximation method based on harmonic points (MPFA-H) and the Fixed-Strain operator
split. The proposed numerical scheme is capable of producing accurate results for the benchmark problems tested,
with structured and unstructured meshes. In the near future, we intend to extend the formulation presented to 3D,
and include more complex physical phenomena, such as elastoplastic deformation, and numerical improvements,
such as changing the pressure-displacement coupling methodology and introducing a non-linear finite volume
formulation to avoid violations of the Discrete Maximum Principle.
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