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Abstract. In the context of the displacement-pressure formulation for the Biot’s problem, the present work ex-
plores some possibilities of Finite Element post-processings to improve the accuracy of the pressure field, the Darcy
velocity, and the effective stress. Numerical experiments illustrate the performance of the different strategies and
compare their results with the native approximations obtained through the use of the lowest-order Taylor-Hood
space in the displacement-pressure Galerkin method. Our results indicate that the post-processing strategies pre-
sented significantly improve the approximation of the velocity and effective stress fields. The pressure field, on the
other hand, does not benefit as much from the strategies considered here.
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1 The two-dimensional Biot’s problem

Poroelasticity problems describe the coupling between the mechanics of an elastic porous matrix saturated
with a Newtonian fluid and the flow of such fluid through the voids of the porous matrix. The study of such systems
dates back to the pioneering work of Terzaghi [1], where a one-dimensional model for soil consolidation was
developed. The work of Terzaghi was later generalized to incorporate the compression of fluid and soil particles
by Biot [2], leading to what is now the mathematical foundations of poroelasticity problems. Applications of Biot’s
model in poroelasticity range from consolidation problems in reservoir engineering, such as oil extraction [3] and
water resources management [4], to biomedical simulations of living tissues [5, 6].

Let Ω ⊂ R2 be an open and bounded polygonal domain occupied by an elastic porous matrix saturated with a
Newtonian fluid. The two-dimensional Biot’s model is mathematically described by the following set of equations,
which need to be satisfied for every time instant t in the time domain T = (ti, tf ] and every point x ∈ Ω

σ = Cε(u), (1a)
z = −K∇p, (1b)

− divσ + α∇p = f , (1c)
α divut + div z = g. (1d)

Equation (1a) is the Hooke’s law, which relates the second-order effective stress tensor σ : Ω × T → S =
Rsym

2×2 with the displacement vector field u : Ω× T → R2. Here, ε(u) =
(
∇u+∇Tu

)
/2 denotes the symmetric

part of the gradient of u, and C is a bounded, symmetric, and uniformly positive definite fourth-order tensor called
the Elasticity tensor. When the porous matrix is made of a homogeneous and isotropic material, the elasticity tensor
is defined by the Lamé constants µ and λ according to

CS = 2µS + λ trS, ∀S ∈ M = R2×2. (2)

The relation between the pore pressure p : Ω × T → R and the percolation velocity z : Ω × T → R2

of the fluid relative to the porous matrix is described by the Darcy’s law (1b). In this equation, K is a bounded,
symmetric, and uniformly positive definite second-order tensor defined as the quotient between the porous matrix
permeability and the fluid viscosity.
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The conservation of the linear momentum is stated by the equilibrium equation (1c), where f : Ω× T → R2

is a prescribed function describing the distributed load over the elastic body and the div operator acts row-wise
over σ. Finally, eq. (1d) is referred to as the continuity equation and models the mass conservation property, with
g : Ω × T → R being a given source/sink function and the sub-index t in divut denoting the partial derivative
with respect to the time variable. In both eq. (1c) and (1d), α is the Biot–Willis constant, which is positive and
usually close to one.

By substituting (1a) in (1c) and (1b) in (1d), we can obtain a partial differential system written only in terms
of the displacement field and the pore pressure

−div(Cε(u)) + α∇p = f in Ω, (3a)
α divut − div(K∇p) = g in Ω. (3b)

To obtain a well posed differential problem, system (3) must be accompanied by boundary and initial conditions.
For simplicity of presentation, we shall only consider Dirichlet boundary conditions in this work, meaning that the
values of u and p are prescribed in the boundary Γ = ∂Ω

u = uD and p = pD on Γ. (4)

We remark that the results presented here are still valid if Neumann conditions were employed as well. As for the
initial condition, we simply assume that the functions u(x, ti) and p(x, ti) are prescribed. In some applications,
however, such initial conditions have to be computed through an auxiliary problem. For instance, in Murad and
Loula [7, 8] and Murad et al. [9], the initial conditions are obtained by the solution of a Stokes-like problem.

2 A Finite Element solution for the Biot’s problem

The Finite Element Method for the approximation of Biot’s problem (3) discussed in this work is based on
the displacement-pressure variational formulation. In that formulation, the sought solution (u, p) ∈ H1(Ω,R2)×
H1(Ω) must satisfy the Dirichlet boundary conditions (4) and the following system of integral equations∫

Ω

Cε(u) : ε(v) dx+

∫
Ω

α∇p · v dx =

∫
Ω

f · v dx ∀v ∈ H1
0 (Ω,R2), (5a)∫

Ω

α divut q dx+

∫
Ω

(K∇p) · ∇q dx =

∫
Ω

g q dx ∀q ∈ H1
0 (Ω), (5b)

where H1(Ω) is the classical Sobolev space over Ω, H1(Ω,R2) = H1(Ω) × H1(Ω), and H1
0 (Ω) ⊂ H1(Ω) and

H1
0 (Ω,R2) ⊂ H1(Ω,R2) are the subspaces with vanishing trace on Γ.

To obtain a fully discrete system based on formulation (5), a discretization scheme for the time derivative
needs to be set. To do so, we first divide the time domain T into M + 1 points tm = ti +m∆t, with m ranging
from 0 to M and ∆t = (tf − ti)/M denoting the time step. Here, we chose the backward Euler method for the
time discretization, which leads to the following approximation

divut(x, tm) ≈ divu(x, tm)− divu(x, tm−1)

∆t
, (6)

for every m = 1, . . . ,M .
Next, a spatial discretization must be defined. In Finite Element Methods based on formulation (5), this is

done by setting finite-dimensional subspaces Uh ⊂ H1(Ω,R2) and Ph ⊂ H1(Ω). We also need to consider their
restrictions

Uh,0 = {v ∈ Uh : v = 0 on Γ} ⊂ H1
0 (Ω,R2) and Ph,0 = {q ∈ Ph : q = 0 on Γ} ⊂ H1

0 (Ω). (7)

By combining the use of the finite-dimensional spaces Uh and Ph and their respective restrictions with the back-
ward Euler approximation (6), we obtain the following fully-discrete problem: For each m = 1, . . . ,M , find the
pair (um

h , pmh ) ∈ Uh × Ph, satisfying the Dirichlet boundary conditions (4), such that∫
Ω

Cε(um
h ) : ε(v) dx+

∫
Ω

∇pmh · v dx =

∫
Ω

f(tm) · v dx ∀v ∈ Uh,0, (8a)∫
Ω

α divum
h w dx+∆t

∫
Ω

(K∇pmh ) · ∇w dx = ∆t

∫
Ω

g(tm)w dx+

∫
Ω

α divum−1
h w dx ∀w ∈ Ph,0, (8b)
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where um
h and pmh are the approximations for the displacement and pressure fields at t = tm.

The spaces Uh and Ph chosen in this work were the lowest-order Taylor-Hood spaces [10, 11]. Let Th be a
regular triangulation of the domain Ω, and denote by Pr(K) the space of polynomials of total degree less than or
equal to r over a triangular element K ∈ Th. When the lowest-order Taylor-Hood space is applied to problem (8),
the displacement approximation space Uh is given by

P2(Th,R2) = {v ∈ C0(Ω,R2) : v|K ∈ P2(K)× P2(K), ∀K ∈ Th}, (9)

while the pressure approximation space Ph is set as

P1(Th) = {q ∈ C0(Ω) : q|K ∈ P1(K), ∀K ∈ Th}. (10)

In eq. (9) and (10), C0(Ω) and C0(Ω,R2) denote the spaces of scalar and vector functions that are continuous over
the domain Ω.

Existence and uniqueness of solution for problem (8) when using the lowest-order Taylor-Hood spaces are
discussed, for instance, in Murad and Loula [8] and Murad et al. [9]. The fact that the Taylor-Hood spaces are
inf-sup stable (see Chapter 8.8 of Boffi et al. [11]) helps to avoid the appearance of spurious pressure oscillations
[8, 9]. Nevertheless, in the presence of strong pressure gradients, oscillations can appear even for inf-sup stable
elements, as shown by Aguilar et al. [12].

2.1 Error estimates for the fully discrete problem

Assume that the exact solutions of problem (3) for the displacement and pressure fields are regular enough,
and consider

ϕ(t) = |u(t)|3 + |p(t)|2,Ω + |ut(t)|3 + |divutt(t)|2, (11)

with | · |r being the semi-norms in the scalar and vector Hr Sobolev spaces and the sub-index tt in divutt denoting
the second order time derivative.

Under these conditions, Murad and Loula [8] develops the convergence analysis for the discrete problem (8).
In particular, the authors show that the approximated solutions (um

h , pmh ) obtained through (8) using the lowest-
order Taylor-Hood spaces satisfy

∥ε(u(tm)− um
h )∥0 ≤ C(h2 +∆t) sup

t∈T
ϕ(t) and ∥∇(p(tm)− pmh )∥0 ≤ C(h+∆t) sup

t∈T
ϕ(t), (12)

where ∥ · ∥0 is the L2 norm over Ω, h is the mesh parameter associated with the triangulation Th, and C are
constants independent of h and ∆t. We draw attention to the fact that the convergence of ∇pmh is only linear in
space, being one order lower than the convergence of ε(um

h ).

2.2 Approximations for the velocity and effective stress

In many applications, the percolation velocity z, also known as the Darcy velocity, and the effective stress σ
are variables of main interest [13]. However, methods based on the displacement-pressure system (3), such as (8),
do not offer native approximations for such variables, which then need to be post-processed. The simplest way to
obtain approximations for z and σ from the solutions (um

h , pmh ) provided by (8) is by applying Hooke’s (1a) and
Darcy’s (1b) laws element-wise

zm
h,L|K = −K∇pmh |K , ∀K ∈ Th, (13a)

σm
h,L|K = Cε(um

h |K), ∀K ∈ Th . (13b)

It is easy to verify from (12) that the local approximations defined by (13) satisfy the following error bounds

∥σ − σm
h,L∥0,Ω ≤ C(h2 +∆t) sup

t∈T
ϕ(t) and ∥z − zm

h,L∥0,Ω ≤ C(h+∆t) sup
t∈T

ϕ(t), (14)

where ϕ(t) is defined as in (11).
Approximations for the Darcy velocity are desired to belong to the H(div,Ω,R2) space, meaning that the vec-

tor entries and its divergence are square integrable. If the Darcy velocity approximation belongs to H(div,Ω,R2),
its normal component is continuous across inter-element boundaries, which is important to guarantee good mass-
conservation properties. Similarly, the effective stress approximation is desired to belong to H(div,Ω,M), which
is the space of 2 × 2 tensors such that each row belongs to H(div,Ω,R2). For the effective stress, belonging to
H(div,Ω,M) is related to the balance of interior tractions. Unfortunately, strategies (13a) and (13b), although
simple and with almost no extra computational cost added, lead to fully discontinuous approximations across
inter-element boundaries, and therefore are not H(div)-conforming.
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3 H(div)-conforming post-processing strategies

In this section, we propose more sophisticated post-processing strategies for the recovery of approximated
velocity and stress fields from the original solution (um

h , pmh ). Both strategies discussed here rely on the solution
of a new global problem, rather than simple local computations. This change, although being more expensive from
the computational perspective, brings benefits. Not only the post-processed solutions are H(div)-conforming,
they also present better spatial convergence rates in some norms, as we shall verify in the numerical experiments
of Section 4.

3.1 Global mixed post-processing for the pressure and Darcy velocity

In Murad and Loula [7, 8], the authors use an H1-conforming variational form of the continuity equation
(1d) to construct a post-processing strategy for the pressure field. That strategy is able to improve the spatial
convergence in the approximation of p and ∇p, but proper approximations for the Darcy velocity are still lacking.
In the present work, we use a mixed form of (1d) instead, in which the new variables are the post-processed
pressure pmh,G and the H(div)-conforming approximation for the Darcy velocity zm

h,G.
Denote by L2(Ω) the space of square integrable scalar funcitons, and let Zh ⊂ H(div,Ω,R2) and Ph,G ⊂

L2(Ω) be finite-dimensional subspaces. The mixed post-processing proposed here consists in finding (zmh,G, p
m
h,G) ∈

Zh × Ph,G such that∫
Ω

K−1 zm
h,G ·w dx−

∫
Ω

pmh,G divw dx =

∫
Γ

pD(w · n) ds ∀w ∈ Zh, (15a)∫
Ω

div zm
h,G q dx =

∫
Ω

g q dx− 1

∆t

∫
Ω

α div(um
h − um−1

h ) q dx ∀q ∈ Ph,G, (15b)

where pD is the Dirichlet boundary condition established in (4), and (zmh,G, p
m
h,G) approximate the velocity and

pressure fields at t = tm.
The adopted velocity approximation space is the Raviart-Thomas space RT1(Th,R2) [14], whose construc-

tion for triangular meshes can be found in Chapter 2.3 of Boffi et al. [11]. To ensure the existence and uniqueness
of solution for problem (15), the accompanying pressure approximation space needs to be set as

P d
1 (Th) = {q ∈ L2(Ω) : q|K ∈ P1(K), ∀K ∈ Th}. (16)

Notice that in (16) we do not require continuity over Ω, allowing for pressure approximations that are discontinuous
across inter-element boundaries.

Although we did not develop the convergence analysis for strategy (15), which will be the theme of future
works, the numerical experiments of Section 4 show that, if the lowest-order Taylor-Hood space was used to
obtain the original approximations (um

h , pmh ), zm
h,G has a spatial convergence one order higher than the local

approximation zm
h,L obtained by (13a).

3.2 Global post-processing for the effective stress

We now present a global H(div)-conforming post-processing strategy for the effective stress. Such a strat-
egy is inspired by the post-processing technique proposed by Loula et al. [13], and recently applied to nearly-
incompressible elasticity problems in Taraschi et al. [15]. The strategy presented here can be viewed as a general-
ization of the strategy originally proposed by Murad and Loula [7].

Let um
h be the approximated displacement field at t = tm computed through (8) and gmh an approximation for

∇p(tm). Given Sh a finite-dimensional subspace of H(div,Ω,M), the stress recover technique consists in finding
σm
h,G ∈ Sh such that∫
Ω

Aσm
h,G : τ dx+

∫
Ω

divσm
h,G ·div τ dx =

∫
Ω

ε(um
h ) : τ dx+

∫
Ω

(αgmh −f(tm)) ·div τ dx, ∀τ ∈ Sh, (17)

where A is the Compliance tensor, defined as the inverse of the elasticity tensor C.
Notice that the first terms in the right and left-hand sides of (17) came from a weak version of the constitutive

equation (1a). Meanwhile, the remaining terms of (17) are obtained by penalizing the residuals of the equilib-
rium equation (1c). For the purposes of this work, we shall set Sh as the Raviart-Thomas based tensor space
RT1(Th,M), defined as the space of tensors such that each row is a vector of RT1(Ω,R2).
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The most natural choice for gmh is the gradient of the original pressure approximation. However, because
∇pmh converges only linearly in space, this option can deteriorate the overall performance of strategy (15). A
better option, as we verified experimentally in Section 4, is setting gmh = −K−1 zm

h,G, for which optimal orders
are obtained in the H(div) norm.

4 Numerical experiments

The numerical experiments performed in this section have the goal of measuring the spatial convergence of
the post-processing strategies discussed in Section 3. For that, we solve the model problem (3) setting T = (0, 1],
Ω as the unit square (0, 1)× (0, 1), and α = 1. The second-order tensor K was set as the identity tensor, while C
is defined as in (2) taking µ = 1 and λ = 1.5. Finally, the source terms f and g were chosen so the exact solutions
for the displacement and pressure fields were given by

u(x, t) =

t sin(πx) sin(πy)
t sin(πx) sin(πy)

 and p(x, t) =
et(x+y)

2
.

Notice that divu is linear on t, meaning that the backward Euler method can exactly approximate the time deriva-
tive divut. This implies that the approximation errors are dominated by the error in the spatial approximation,
enabling us to easily measure the spatial convergence of the proposed methods.

To solve that problem, the domain Ω was first divided into n × n squares. Each square was then subdivided
into two triangles by the diagonal linking its southwest corner with the northeast one, resulting in meshes with 2n2

triangular elements. The values for n were set as powers of 2 ranging from 2 to 128. For the time discretization,
∆t was kept fixed as 0.05. For each mesh, approximated solutions (um

h , pmh ) were obtained by solving the system
(8) with the lowest-order Taylor-Hood spaces.

Next, we compute the Darcy velocity approximations zm
h,L and zm

h,G using (13a) and (15) respectively. From
the mixed method (15) we also obtain the post-processed pressure field pmh,G. For each value of n, we measure the
pressure and velocity approximation errors in the L2 norm at the final time tm = 1. In Fig. 1, those results are
plotted in − log10(h)× log10(∥error∥0) graphs, from which we could numerically assess the spatial convergence
order of each method. In that same figure, we also present results for the divergence of the Darcy velocity. A
visual comparison between the first component of the Darcy velocity approximations zm

h,L and zm
h,G can be found

in Fig. 3.

Figure 1. Convergence results for the approximation of the pressure (left), Darcy velocity (center), and divergence
of the Darcy velocity (right). All the errors were measured at tm = 1.

Finally, the approximations for the effective stress σm
h,L and σm

h,G are computed through (13) and (17). For
the H(div)-conforming strategy (17), we set gmh as both ∇pmh and −K−1 zm

h,G. Spatial convergence results for
the stress approximation are presented through − log10(h)× log10(∥error∥0) graphs in Fig. 2.
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Figure 2. Convergence results for the approximation of the effective stress (left) and its divergence (right). The ap-
proximations σm

h,G1
and σm

h,G2
are obtained through (17) setting gmh = ∇pmh and gmh = −K−1 zm

h,G, respectively.
All the errors were measured at tm = 1.

Figure 3. Approximations for the first component of the Darcy velocity with n = 4. On the left the local strategy
(13a) is used, while the global mixed approach (15) is employed on the right.

5 Conclusions

As shown in Fig. 1, the mixed post-processing strategy (15) was able to produce higher-order approximations
for the Darcy velocity than the standard local method (13a). The convergence rate was improved by one order
in the L2 norm, and by two if we consider the norm of the divergence as well. Furthermore, the velocity fields
provided by (15) are also H(div)-conforming, leading to better mass-conservation properties. The combination of
those facts results in significantly more accurate velocities when using the mixed approach, as illustrated by Fig. 3.
On the other hand, the post-processed pressure obtained from (15) has the same convergence rate as the original
pressure approximation, despite having smaller absolute errors.

For the effective stress approximation, all the strategies considered here provided almost identical L2 errors.
The difference between such strategies only becomes apparent when analyzing the divergence approximation.
While the local approach (13b) only reached linear convergence for the divergence, strategy (17) with gmh =
−K zm

h,G converged quadratically. The divergence results for (17) with gmh = ∇pmh are still better than those
obtained by (13b), but fail to reach optimal convergence rates in the H(div) norm. As a final note, we remark
that the stress fields provided by (17) are H(div)-conforming, and therefore one can expect better balanced inter-
element tractions.
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