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Abstract. This work presents first results on a methodology to evaluate fluid-dynamic forces on immersed bodies 
in three-dimensional fluid flows resolved through the finite element method (FEM). A classical Eulerian approach 
is followed to describe the fluid (assumed incompressible through the Navier-Stokes equations). The fluid-body 
interface is treated through Nitsche’s method, which is an immersed boundary technique with which we 
consistently impose the Dirichlet boundary conditions in a weak form. In order to assess the accuracy and 
efficiency of the developed scheme, a numerical simulation of a 3D benchmark stationary flow of an 
incompressible fluid is performed. This work refers to an intermediate stage of a doctoral research that aims to 
model fluid flows with immersed particles with consistent fluid-particle interaction and particle-to-particle 
contacts, as observed in many particle-laden fluid applications. 
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1  Introduction 

In the fluid-body interaction realm, if we restrict ourselves to the way how the numerical method handles the 
interface between the fluid and the body (solid) phases, the most common numerical approaches available may be 
categorized into two major groups. The first one is commonly referred to as the coincident boundary methods, 
being those in which the computational grid or mesh of the fluid ends exactly where that of the body begins (see 
e.g. Donea et al. [1]). The second one are the so-called immersed boundary methods, in which the fluid and the 
body grids are totally independent from each other, and overlapped (see Benk, Ulbrich and Mehl [2]). 

This work follows the immersed boundary approach and presents a methodology to compute the fluid-
dynamic forces on immersed bodies in three-dimensional FEM simulations of incompressible fluid flows governed 
by the Navier-Stokes equations. We resort to the Nitsche’s method (see Nitsche [3]) to handle the (immersed) 
fluid-body interface. Among other advantages, it does not increase the system’s degrees of freedom and has a 
rather straightforward implementation. The fluid problem is treated through an Eulerian description, which avoids 
re-meshing or mesh adaptation throughout the simulations. Here, only the stationary version of the problem is 
presented (the transient version is currently under development by the authors, using standard Newmark time-
integration, and shall appear soon). For the FEM discretization, a mixed finite element formulation within a 
standard Galerkin framework is used, with Taylor-Hood tetrahedral elements that fully satisfy the LBB-condition 
(see e.g. Wieners [4] and Bruman and Fernández [5]). A consistent Newton-Raphson procedure is implemented 
for solving the system´s equations. Numerical instability that may potentially arise from convective-dominated 
problems is circumvented here by considering only low to moderate Reynolds numbers (we note that we handle 
such instabilities in our code through a SUPG approach, but prefer not to introduce this additional complexity here 
as to keep the focus of the work on the methodology for computation of the fluid-dynamic forces). Immersed 
boundary methods combined with fixed fluid grids have been gaining attention in recent years in the context of 
embedded interfaces modeled by the XFEM (see Dolbow and Harari [6]), also with imposition of constraints along 
non-matching surface grids (Bazilevs and Hughes [7]).  

This work reports only partial results from a broader research, in which we are developing a numerical 
framework to deal with 3D fluid-particle interaction problems in particle-laden fluid flows. 
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2  Finite element formulation for the fluid 

Considering an incompressible viscous fluid governed by Navier-Stokes equations for steady-state problems, 
we have 

   div in ,   u u T b    (1) 

 div in 0 ,u     (2) 

where (1) is the well-known conservation of linear momentum of a material point of the fluid and (2) follows from 
the mass conservation principle. Above, , , u T  and b  are the fluid’s density, velocity field, Cauchy stress field 
and volumetric force per unit mass, respectively, with   as the problem domain. For an Eulerian description and 
a Newtonian constitutive law for the fluid, the following system arises from (1) and (2): 
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where   is the fluid’s kinematic viscosity, s u  is the (symmetric) strain rate tensor and p  the fluid’s kinematic 
pressure. Vector n  stands for the unit outward normal to the boundary  , and andu  t  are the prescribed traction 
and velocity vectors, respectively, on the portions u  and t  of  . The third and fourth expressions of (3) 
represent the boundary conditions of Dirichlet (essential) and Neumann (natural) types, respectively. 

The weak form of  (3) reads 

            div div; , , , , , , , ,
t

c a p q q          u w u w u w u w t w b   w   (4) 

where w  and q  are arbitrary test functions for the velocity and pressure fields, respectively. The trilinear and 
bilinear forms of the convective and viscous terms above are 

        and  ; , , : .c d a d  
        u w u w u u w u w u   (5) 

2.1 Spatial discretization 

A standard mixed finite element scheme is applied for spatial discretization, where the velocity and pressure 
fields are the primitive variables of the problem and the fluid’s domain is discretized with Taylor-Hood tetrahedral 
elements (see Taylor and Hood [8]). Such elements use quadratic shape functions for the velocity field and linear 
shape functions for the pressure field, therewith overcoming numerical instabilities (they fulfill the LBB 
compatibility condition). Accordingly, the finite element approximation can be written as 
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where uN  and pN  are matrices that contain the element’s shape functions of the velocity and pressure fields, 
respectively, and eu  and ep  are the vectors that collect the element’s nodal degrees of freedom. Inserting eq. (6) 
into the weak form (4), and performing some algebra, we arrive at the discrete weak form of the fluid problem, 
which in matrix form is given by 

 
 
T ,

    

C u u Ku Gp f
G u 0

  (7) 

where C , K , G  and TG  are the convective, viscous, gradient operator and divergent operator matrices, 
respectively. Still in (7), f  is the vector that contains the field forces and boundary conditions. The system of 
equations (7) is non-linear due to the convective term, and its solution is achieved using a consistent Newton-
Raphson scheme for which full quadratic convergence is ensured. For more details about its numerical derivation 
and implementation, the interested reader is referred to Müller et al. [9] (the two-dimensional version may be found 
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in Gomes and Pimenta [10]). 

3  Imposing the interface condition 

The main idea of this work is to use the embedded interface concept in order to compute the fluid flow 
variables at the fluid-body interface from an Eulerian fixed mesh. To do so, we resort to the Nitsche’s method to 
enforce the interface constraints (Dirichlet boundary conditions) in a weak sense, for treating the mechanical 
interactions of overlapping meshes, as depicted in Figure 1. One of the greatest advantages of this method is that 
it does not add new degrees of freedom to the system. 

 

Figure 1. Immersed solid in a fluid and the embedded fluid-body interface. The interface is discretized into 
interface elements as to enable the computations. Superscript i  stands for the body´s number.  

By applying Nitsche’s method in (4), after some algebra the weak form turns into 
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where h  denotes the local mesh size on the boundary i  (or immersed interface) of body i ,  n   is the normal 
derivative of   , and 1  and 2  are penalty coefficients. The discrete weak form of eq. (8) in matrix form reads 

 
 
T*

* *
,

     

C u u K u G p f Hu
G u 0

  (9) 

where  

  
T T* T T T

TT T T T T

TT T T T T

, , and ,

, 

 and  

* *

,

1 2

,
i i

i

e e

i i
e u u j j e e u p e

e e

i i
e u u e e u u

e

d d

d d
h h

 



  

 
  

           
           

                           

  

 

K K B B E F  G G D  G G D , H B E F

B A N N A D A N N A

E A N N A F A N N

e n n

n n ,
i e

e   A

  (10) 

in which eA  is the assembling matrix relative to the interface elements of i . The interested reader is referred to 
Benk, Ulbrich and Mehl [2] for more details on the Nitsche’s method applied to the Navier-Stokes equations. 

3.1 Evaluating the fluid-dynamic forces at the immersed interface 

The immersed interfaces are the regions where the fluid-dynamic forces between the fluid and the immersed 
body take place. The usual way to evaluate the resultant of these forces, herein designated by if , are through 
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 .i i
id 

 f Tn   (11) 

However, the boundary i  of each immersed body is discretized into k  Lagrangian elements (see Figure 
2(b)), such that the fluid-dynamic force at each element can be evaluated by 

  and,i ik k

i
kd 

 f Tn   (12) 

where i
k  is the boundary of the element k  belonging to the immersed body i . The moment of each element k , 

in turn, with respect to the barycenter of the body i , may be obtained by 

 ,i i
k k

i
k  m r f   (13) 

where i
kr  is the vector that connects the barycenter of the body i  to the point i

kC  (this is the center of each element 
k  used to discretize the immersed body i , see Figure 2(b)) on its boundary where traction Tn  acts. It is known 
that the use of penalty-based methods, such as Nitsche´s, by weakly imposing Dirichlet boundary conditions on 
the fluid-body interface, can cause disturbances in the pressure and velocity fields in the vicinity of i . As a 
consequence, the above computations of i

k
f  and i

k
m  can be severely affected. Here we propose a methodology 

to overcome this problem. It is inspired by the work of Chadil et al. [11]. Accordingly, i
k

f  is obtained by a linear 
extrapolation of the pressure and the velocity gradient values in the region nearest to i  where the perturbation 
of the extrapolated values (in PE1 and PE2, see Figure 2(b)) is minimized. Such values are obtained using the 
interpolation function of the element these points belong to. According to Chadil, this region has the size of the 
cut element size ( x ), as depicted in Figure 2. 

 

Figure 2. (a) Vicinity of interface i  where the values of the pressure field can be disturbed; (b) Scheme for 
obtaining the points at which pressure and velocity gradient values are extrapolated. 

With the extrapolated values in i
kC  , the fluid-dynamic forces at i

k  can be evaluated by (11) and (13). The 
equation (14) shows how the resultant force and the respective resultant moment on each immersed body can be 
obtained. 
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where nel  is the number of interface elements associated with i  . 
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4  Numerical example 

4.1 3D Laminar flow around a cylinder 

This example consists of a stationary three-dimensional laminar flow around a cylinder with circular cross-
section within a narrow channel, which is a classical benchmark in the CFD community (see e.g. Schäfer and 
Turek [12], Bayraktar, Mierka and Turek [13], Turek and Schäfer [14]). The fluid is governed by the Navier-
Stokes equation. The geometry and the boundary conditions are illustrated in Figure 3. 

 

Figure 3. Geometry and boundary conditions for 3D laminar flow around a cylinder with circular cross-section 
(figure from Schäfer and Turek [12]). 

The fluid velocity profile at the inflow section of the channel is 

     
4

16
0, , , 0mU yz H y H z

U y z V W
H

 
     (15) 

where  m s0.45mU   and  m0.41H  , from which the Reynolds number is Re = 20. The kinematic viscosity 
is  m s3 210  , and the fluid density is  kg m31.0  . Notation for the velocity components is 

   1 2 3, , , ,u u u U V W  and the boundary condition at the outflow plane is zero traction. The penalty coefficients 
used are 7

1 2 10   . The convergence tolerance within the Newton-Raphson iterations is TOL 610 . 
Figure 4 shows the fluid FEM mesh (left) and the cylinder´s interface mesh (right) used herein. 

 

Figure 4. (a) Fluid FEM mesh: 158082 tetrahedral elements and 220324 nodes; (b) Interface (Lagrangian) mesh: 
320 triangular elements and 170 nodes. 

Figure 5 depicts the results in terms of the velocity and pressure fields obtained. The resulting drag coefficient 
on the cylinder is summarized in Table 1. As we can see, the drag coefficient value is within the reference interval 
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shown in Schäfer and Turek [12]. It is important to remark that the refinement of the mesh around the interface 
i  and the correct choice of penalty parameters have a rather significant importance in the accuracy of the result. 

Details on this issue are being investigated and will be subject of a forthcoming paper (in preparation) in a journal. 

 

Figure 5. Velocity and pressure fields. 

Table 1. CD coefficient. 

 

5  Conclusions 

This work presented a summary of a methodology to compute the fluid-dynamic forces on an immersed body 
within a fluid. A mixed finite element formulation of an incompressible fluid flow governed by stationary Navier-
Stokes equation was used, along with Nitsche’s method to enforce the Dirichlet boundary conditions in a weak 
form at the interface. We showed our first results for 3D simulations using such methodology. Its extension to 
other shapes of immersed bodies (especially spherical, in which we have interest for enabling the simulation of 
particle-laden fluids) and to transient problems is currently under work. We find the present results very promising. 
A detailed report of this methodology and its application to other (including transient) problems, including fixed 
and moving immersed bodies, are the subject of a paper that will be published in a journal in the near future. 
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