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Abstract. Discontinuities, such as fractures and geological faults, are present in several geological models where 

a fluid flow analysis is performed. In cases where the discontinuity filling material has a lower permeability than 

the matrix, this discontinuity will act as a barrier to fluid flow in the porous media. On the other hand, fluid flow 

is enhanced in the absence of filling material or in the highly porous case. Embedded formulations have become 

attractive to model discontinuities over the last decades since they do not require mesh conformity. However, the 

literature lacks a formulation fully developed in the context of the Finite Element Method capable of modeling 

discontinuities that act like barriers to fluid flow in transient problems. This paper presents an improved embedded 

finite element formulation to investigate fluid flow behavior in fractured porous media. The proposed approach 

includes additional degrees-of-freedom representing the pressure drop between fracture surfaces and the fluid 

pressure within the fracture. Single-phase flow is considered. Darcy’s law governs fluid flow through the porous 

media, while the cubic law of parallel plates controls the fluid flow inside the fracture channel. A numerical 

example comparing the results with a model with interface elements modeling the discontinuity is compared to 

the embedded formulation. The numerical results demonstrate the capability and limitations of the proposed 

approach to capture the influence of discontinuities on fluid flow behavior in porous media. 

Keywords: Embedded finite element, fluid flow in porous media, barriers. 

1  Introduction 

The fluid flow in a geological model with the presence of discontinuities, such as fractures and geological 

faults, is highly dependent on the discontinuities' hydraulic properties. If the discontinuity filling material is less 

permeable than the matrix, it will act as a barrier to fluid flow in the porous media. On the other hand, fluid flow 

is enhanced in the absence of filling material or in the highly porous case. 

In the context of the Finite Element Method, different approaches to model this problem can be found in the 

literature. Here we highlight the discrete modeling approach, using interface elements, and embedded 

formulations, which in general, involve applying an enrichment to the discretized field. This last approach has 

become attractive over the last decades since it does not require mesh conformity.  

The embedded formulation in this study is based on the Strong Discontinuity Approach (SDA), with the 

enrichment degrees of freedom associated with the discontinuity. In the literature, Callari and Armero [1], Alfaiate 

et al. [2], and Benkemoun et al. [3] used the embedded formulations based on the SDA to model fluid-flow 
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problems in porous media. Still these studies, the transversal flow in the discontinuity was not considered. 

Recently, Damirchi et al.. [4] presented an embedded finite element formulation capable of modeling both 

longitudinal and transversal flow in the discontinuity, achieving a finite element with similar behavior to double-

node interface elements in steady-state single-phase fluid flow problems. 

In this paper, the formulation presented by Damirchi et al. [4] is extended to transient problems. The behavior 

of the finite element is then evaluated by comparing it with a model using an interface element. 

2  Governing equations 

Consider the problem presented in Figure 1 with a domain  closed by a boundary  and composed by the 

union of the boundary p and q, associated with the essential and natural boundary conditions, respectively. The 

discontinuity, d, crosses the domain and separates it into two sub-domains, + and -. Their definition is based 

on the normal vector to the discontinuity surface, nd, such that + is the sub-region at which the normal vector nd 

points. 

 

Figure 1. Problem domain and boundary conditions 

Two continuity equations govern the fluid flow problem in a fractured porous media. Neglecting the 

deformability of the solid skeleton and using Darcy’s law, the continuity equation that defines fluid flow through 

the porous media can be written as: 
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where pm is the pressure field in the porous media, k is the permeability tensor, f is the dynamic viscosity of the 

fluid,  is Biot’s coefficient,  is the porosity, Ks is the bulk modulus of the solid, and Kf is the bulk modulus of 

the fluid. 

The second governing equation is the continuity equation of the fluid flow inside the discontinuity: 
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where qf is the longitudinal mass flow, qT, and qB are the transversal mass flows through the top and bottom 

boundaries of the discontinuity, respectively, and s is the longitudinal coordinate along the discontinuity. These 

flows are described in terms of the pressure field along the top, pT, middle, pf, and bottom, pB, planes of the 

discontinuity: 
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where cT and cB are the leak-off parameters, and w is the discontinuity normal aperture. 

3  Discretization of the governing equations 

Initially, the problem is discretized following the same strategy as XFEM [5]. Two sets of degrees of freedom 

are defined per node to describe the pressure field: p and a. The first set is associated with the regularized pressure 

field, and the second set is associated with the enriched pressure field.  For example, Figure 2 illustrates a linear 

quadrilateral finite element with an embedded discontinuity. 

 

Figure 2. Quadrilateral finite element with an embedded discontinuity 

The pressure field in the porous media is discretized as: 

 ( ) ( ) ( ) ( )( ) ( ),
dm dp t t t
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 

x N x p x I H a  (6) 

where matrix N is the usual shape function matrix of the finite element, d is the Heaviside function, which 

assumes one if the point is inside the sub-domain + and zero if the point is inside the sub-domain -, and Hd is a 

diagonal matrix with the Heaviside function evaluated at the element nodes. 

The longitudinal pressure in the discontinuity mid-plane is taken as an independent field, and is discretized 

as: 

 ( ) ( ) ( ),f d fp s t s t= N p  (7) 

where Nd is a vector composed of one-dimensional Lagrange shape functions, and pf is the vector with the pressure 

degrees of freedom in the discontinuity mid-plane. 

3.1 Discretized weak form 

The weak form of the governing equations (1) and (2) is obtained by applying the Galerkin method followed 

by the Divergence theorem. Then, substituting the discretization of the pressure fields defined in equations (6) and 

(7), the following system is obtained: 
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3.2 Proposed embedded formulation 

This embedded finite element formulation aims to reduce the number of enrichment degrees of freedom. 

Then, instead of describing the discontinuity in the pressure field using additional degrees of freedom at the nodes 

of the finite element, as done in XFEM, it uses  the jump in the pressure field evaluated along the embedded 

discontinuity, as shown in Figure 2. To achieve this, the following transformation must be defined: 

 ( ) ( )t t=  a T p  (17) 

If a constant jump in the pressure field is assumed along the longitudinal coordinate s, then the matrix T is 

simply: 

  1 1 1 1
T

=T  (18) 

If a linear jump in the pressure field is assumed along the longitudinal coordinate s: 
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where ld is the discontinuity length inside the element, and  p1 and  p2 are the jumps in the pressure field at the 

nodes where the discontinuity intersects the element. 

By assuming that the transmission of the jump in the pressure field that happens in the discontinuity to the 

continuum occurs completely in the normal direction: 
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This later definition is the same one presented by Damirchi et al. [4]. They discuss that this definition of this 

transmission matrix, T, promotes a rigid-body transfer of the pressure jumps along the interface to the continuum. 

The consequence of this is that the product B T leads to a zero matrix. In steady-state problems, this simplifies the 

implementation calculations since the parts in the fluid flow matrix that are multiplied by the Heaviside function, 

shown in equation (11), go to zero. Then, there is no need to perform a subdivision of the element domain to do 

the numerical integration of the element matrices. 

Since this paper analyzes a transient problem, and the compressibility matrices are present, equation 10, then 

a subdivision of the element domain is required to perform the numerical integration. 
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4  Solution scheme 

A fully implicit time integration scheme was adopted. 

 ( ) ( ) ( )1 1n n nt t t t+ += +  P P P  (22) 

where tn+1 corresponds to the current time, tn to the previous one, and  t is the time step. 

By substituting in (8), the system of equations presented in equation (23) is obtained. 

 ( ) ( ) ( )1n nt t t t++  =  +S H P Q S P  (23) 

5  Numerical example 

For all numerical examples, the following properties were adopted: the hydraulic conductivity of 1.1574e-

5 m/s, the fluid dynamic viscosity of 1.0e-3 Pa s, the specific water weight of 9.81 kN/m³, and the discontinuity 

normal aperture is zero. 

To validate the results obtained with the embedded formulation presented in this paper, the same problems 

were modeled with triple-node interface elements using the in-house code GeMA [6]. 

The problem analyzed consists of a square domain of 2 x 2 m, discretized with a single finite element using 

the embedded and discretized using two continuum elements and one interface element using discrete fracture 

model. A zero-pressure boundary condition is defined at the top edge of the domain and a discharge at the bottom 

edge. Two discharge conditions are considered: uniform and non-uniform.  

 
(a) 

 
(b) 

Figure 3. Geometry and boundary conditions of the example: (a) uniform discharge; (b) non-uniform discharge 

5.1 Permanent analysis 

The first example evaluates the capability of the proposed embedded formulation to model the presence of 

barriers inside the porous media. To do this, leak-off values equal to 1.0 m/(kPa s) and 1.0e-9  m/(kPa s) were 

assumed. The results for the uniform discharge case are shown in Figure 4. 

p    

    .      s

 
. 

  

 
. 

  

    .      s

 

 

p    

    .      s

 
. 

  

 
. 

  

    .      s

 

 



An improved embedded finite element formulation for investigating fluid flow behavior in fractured porous media 

CILAMCE-2023 

Proceedings of the XLIV Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC  
Porto – Portugal, 13-16 November, 2023 

 
(a) 

 
(b) 

Figure 4. Permanent analysis in the uniform discharge case. (a) cT = cB = 1e-1 m/(kPa s); (b) cT =cB = 1e-

9 m/(kPa s) 

In the uniform discharge case, the relative error between the embedded formulation and the interface element 

model of the pressure at the bottom nodes and the pressure jumps is of magnitude lower the 1e-12. 

To analyze the non-uniform discharge case, the pressure field along the left edge was evaluated for the same 

two leak-off parameters, as shown in Figure 5. 

 
(a) 

 
(b) 

Figure 5. Permanent analysis in the non-uniform discharge case. (a) cT = cB = 1e-1 m/(kPa s); (b) cT =cB = 1e-

9 m/(kPa s) 

In the non-uniform discharge case, there is a difference in the values obtained with the two models, as it can 

be seen in Figure 5. This difference is justified by the fact that the model using an interface element can capture 

the change in the pressure gradient due to the presence of the discontinuity, and this is not taken into account in 

the embedded finite element formulation presented in this paper. An improvement in the matrix T, equation (17), 

would be required to achieve this. 

5.2 Transient analysis 

To perform a transient analysis, a compressible porous media was considered with the bulk modulus of the 

solid equal to 1.0e9 kPa, and the bulk modulus of the fluid equal to 2.0e6 kPa. Only the case of a uniform discharge 

is analyzed. The time increment was kept constant for the transient analysis and equal to 0.1 s, and the final analysis 

time was set as 10.0 s. 

Table 1 presents the results for the nodal pressures at the final time. 
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Table 1. Transient analysis: comparison with interface elements in the uniform discharge case with leak-off 

equal to 1e-9 m/(kPa s) 

Value (kPa) Interface element Embedded Relative error 

Node pressure 1 2.63708867e6 2.6341902028e6 1.099E-03 

Node pressure 2 2.64148780e6 2.6364200418e6 1.919E-03 

Jump A -2.60347152e6 -2.5965295736e6 2.666E-03 

Jump B -2.618313.38e6 -2.6172937932e6 3.894E-04 

 

Despite the embedded formulation results still being close to  those of the interface element model, the 

relative error increased from the magnitude of 1e-12 to 1e-3. This increase in the difference, even in the case of a 

uniform discharge, is justified  as in the example of the permanent case in a non-uniform discharge. Now, a change 

in the pressure gradient is present in the results with interface elements, and this embedded formulation cannot 

capture this behavior. 

6  Conclusions 

This paper presented a study with embedded finite elements for fluid flow in porous media capable of 

modeling transversal flow through discontinuities. The embedded formulation is achieved through a 

transformation of the enrichment degrees of freedom based on the XFEM. The numerical example shows the 

capability of the formulation to control the transversal flow using the leak-off parameter and also a comparison of 

the present embedded formulation with a model using interface elements. The comparison was made for a 

permanent and a transient problem with different boundary conditions, which allowed us to see the difference in 

the two approaches due to the simplifications involved in the embedded formulation. 

A simple example was presented, and allowed a better understanding of the present formulation. Therefore, 

the ongoing studies focus on applying the formulation to larger problems and extending it to a two-phase flow 

formulation. 
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