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Abstract. Two methods used for simulating flow problems in engineering are Method of Characteristics (MOC) 

and Smoothed Particle Hydrodynamics (SPH). This paper compares the results obtained using these two methods 

for hydraulic transient in forced conduits. Both steady and unsteady friction losses are considered using the 

unsteady model proposed by Vardy et al. [1]. The study findings obtained by in-house codes are compared with 

the experimental results of Martins et al. [2]. 
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1  Introduction 

Fluid flow systems rely on effective management of hydraulic transient to ensure system integrity and optimal 

design. This study investigates this issue using two numerical methods: Smoothed Particle Hydrodynamics (SPH) 

and the Method of Characteristics (MOC), both coupled with an unsteady friction model. 

The SPH method divides the fluid domain into particles that model fluid behavior by computing interactions 

between them. On the other hand, MOC [3-6] solves partial differential equations (PDEs) that describe fluid 

behavior in piping or channel systems by tracing flow characteristics to compute changes in flow variables over 

time. 

The SPH method employs the Corrected Smoothed Particle Hydrodynamics (CSPH) method proposed by 

Chen et al. [7] and artificial viscosity introduced by Monaghan and Gingold [8] to mitigate numerical instabilities 

arising from shocks and discontinuities. 

The simulations incorporate the unsteady friction model proposed by Vardy et al. [1] to consider friction 

effects on the water hammer phenomenon. This model captures time-dependent frictional forces in the system, 

providing a more realistic representation of the hydraulic transient. By integrating this model with the SPH method 

in an in-house code, the study aims to improve the accuracy and reliability of hydraulic transient simulations. 

The study compares the SPH and MOC methods to the Martins et al. [2] experiment, obtaining good 

agreement. The accuracy of the SPH-based simulation is evaluated by assessing the pressure at specific points 

within the flow during the hydraulic transient phenomenon. 

2  Mathematical Models 

2.1 Governing Equations 

The continuity and momentum equations for a transient flow in one-dimensional pipes are defined as 
 

 
𝐷𝐻

𝐷𝑡
+

𝑐2

𝑔

𝜕𝑈

𝜕𝑥
= 0, (1) 

 

 
𝐷𝑈

𝐷𝑡
+ 𝑔

𝜕𝐻

𝜕𝑥
+

4𝜏

𝜌𝑑
= 0, (2) 
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where 𝐻 is the manometric height (m), 𝑈 is the flow mean velocity (m/s), 𝑐 is the sonic wave speed (m/s), 𝑔 is 

the gravitational acceleration (m/s²), 𝜏 is the sheer stress on the inner pipe’s wall, 𝜌 is the fluid’s density (kg/m³), 

𝑑 is the internal pipe diameter, 𝑥 and 𝑡 denote the axial distance along the pipe and the time, respectively, 𝐷/𝐷𝑡 

and 𝜕/𝜕𝑥 are the total and the partial derivatives, respectively. 

2.2 Unsteady Friction Model 

 

The mathematical model of unsteady friction proposed by Vardy et al. [1] approximates the model derived 

by Zielke [9] in 1968. The model consists of 
 

 𝜏 =
1

8
𝜌 𝜆 |𝑈| 𝑈 +

4 𝜐 𝜌

𝑑
[𝑌1(𝑡) + 𝑌2(𝑡)], (3) 

 

where 𝜐 is the kinematic viscosity (m²/s) and 𝜆 is the steady friction (-), approximated by 
 

 𝜆 = {(
64

ℜ
)

8

+ 9.5 [ln (
𝜖

3.7𝑑
+

5.74

ℜ 0.9
) − (

2500

ℜ
)

6

]

−16

}

1

8

, (4) 

 

where ℜ is the Reynolds number, and 𝜖 is the inner pipe wall roughness (m). Futhermore, each 𝑌𝑚 is defined by 
 

 𝑌𝑚(𝑡) = {

0,                                                                                         𝑡 = 0.

𝑌𝑚,𝑡−1exp (−
4 𝜐 𝐵𝑚

𝑑2
(𝑡 − 𝑡∗)) + 𝑇𝑚(𝑈𝑡 − 𝑈𝑡∗

),   𝑡 > 0,
  (5) 

 

where 𝐵𝑚 and 𝑇𝑚 are constant coefficients, 𝑈𝑡 and 𝑈𝑡∗
 are the flow mean velocities in the current instant, and in 

the immediate anterior instant, respectively. In the work of Vardy et al. [1], the authors presented pre-calculated 

values of 𝐵𝑚 and 𝑇𝑚 for several ranges defined by 𝜆𝑅  ℜ = 0.250 𝜆 ℜ, Tab. 1. 

 
Table 1. Values of the coefficients 𝐵𝑚 and 𝑇𝑚 for several ranges defined by 𝜆𝑅 ℜ. 

 

𝜆𝑅  ℜ 𝑇1 𝑇2 𝐵1 𝐵2 

250.000 250.000 74.000 4.400 × 105 4.200 × 105 

500.000 260.000 65.000 5.600 × 105 1.150 × 105 

1000.000 350.000 65.000 9.800 × 105 4.120 × 105 

2000.000 470.000 65.000 2.800 × 105 1.620 × 105 

3  The SPH Method 

The SPH method consists of an integral convolution approximation of a function 𝑓 on a domain Ω, using a 

kernel function, 
 

 〈𝑓(𝑥)〉 = ∫ 𝑓(𝑥′)𝑊(|𝑥 − 𝑥′|, ℎ)
Ω

d𝑥′,  (6) 

 

where 〈∙〉 is the approximation operator, ℎ is the smoothing length, and 𝑊 is the smoothing or kernel function. The 

gradient operator application on eq. (6) leads to the derivative approximation of 𝑓. Considering the kernel function 

a Dirac function approximation, the integral on the support domain boundaries becomes null. As a result, the 

derivative approximation of 𝑓 is   

 

 〈
𝜕𝑓(𝑥)

𝜕𝑥
〉 = ∫ [𝑓(𝑥′) − 𝑓(𝑥)]

𝜕𝑊(|𝑥 − 𝑥′|, ℎ)

𝜕𝑥Ω

d𝑥′,  (7) 

 

Then, the domain is divided into particles with defined physical properties such as mass and density. That 

allows a particle representation of eqs. (6) and (7) as 
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 〈𝑓(𝑥𝑖)〉 = ∑ 𝑓(𝑥𝑗)

𝑛𝑖

𝑗=1

𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

,  (8) 

 

 〈
𝜕𝑓(𝑥𝑖)

𝜕𝑥
〉 = ∑[𝑓(𝑥𝑗) − 𝑓(𝑥𝑖)]

𝜕𝑊𝑖𝑗

𝜕𝑥

𝑚𝑗

𝜌𝑗

𝑛𝑖

𝑗=1

,  (9) 

 

where the infinitesimal volume element d𝑥′ becomes 𝑚𝑗 𝜌𝑗⁄ , with 𝑚𝑗 and 𝜌𝑗 being the mass and the density of the 

jth particle within the ith particle neighborhood. Moreover, 𝑛𝑖 is the total neighbors of the ith particle, 𝑊𝑖𝑗 is the 

kernel applied on |𝑥𝑖 − 𝑥𝑗|, and 𝜕𝑊𝑖𝑗 𝜕𝑥⁄  is the kernel gradient.  

3.1 Smoothing function and boundary treatment 

 

The smoothing function is an even function that depends on the distribution of the particles within its support 

domain to approximate a function 𝑓 accurately. In the current paper, the authors used the cubic spline function 

defined by Monaghan and Lattanzio [10] as  
 

 𝑊(𝑠, ℎ) =
1

6ℎ
{

(2 − 𝑠)3 − 4 (1 − 𝑠)3, 0 ≤ 𝑠 < 1,

(2 − 𝑠)3,                                  1 ≤ 𝑠 < 2,
0,                                              otherwise,

 (10) 

 

where 𝑠 = |𝑥𝑖 − 𝑥𝑗| ℎ⁄ . The relationship between the kernel accuracy and the particles’ distribution is within the 

capability of the convolution integral with the kernel to represent a polynomial field exactly. This measure 

capability is called as consistency. Thus, the constant consistency is related to a constant field function by 

 

 ∑ 𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

= 1

𝑛𝑖

𝑗=1

,  (11) 

 

while the linear consistency is given by 
 

 ∑(𝑥𝑖 − 𝑥𝑗)𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

= 0

𝑛𝑖

𝑗=1

,  (12) 

 

According to eqs. (11) and (12), the accuracy decreases near the support domain boundary due to a lack of 

particles to maintain constant and linear consistency Therefore, the CSPH method [7], which consists of a Taylor 

series expansion of 𝑓(𝑥′) and 𝜕𝑓(𝑥′)/𝜕𝑥 around a particle at 𝑥, neglecting the high-order derivatives and 

considering the linear consistency to hold. As a result, the eqs. (8) and (9) are rewritten as 
 

 〈𝑓(𝑥𝑖)〉 =

∑ 𝑓(𝑥𝑗)𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑖
𝑗=1

∑ 𝑊𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑖
𝑗=1

,  (13) 

 

and 
 

 〈
𝜕𝑓(𝑥𝑖)

𝜕𝑥
〉 =

∑ [𝑓(𝑥𝑗) − 𝑓(𝑥𝑖)]
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑖
𝑗=1

∑ (𝑥𝑖 − 𝑥𝑗)
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑖
𝑗=1

,  (14) 

 

3.2 Artificial Viscosity 

 

The SPH method represents spurious numerical oscillations and particle non-physical interpenetration when 

used to simulate phenomena that have shock waves. To mitigate these aspects, Monaghan [11] added a dissipative 

term to the momentum equation. The term is known as artificial viscosity and has the following form: 
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 𝛱𝑖𝑗 = {

𝛽 𝜁𝑖𝑗
2 − 𝛼 𝑐 𝜁𝑖𝑗

𝜌
, 𝑈𝑖𝑗𝑥𝑖𝑗 < 0,

0,                                otherwise,

  (15) 

 

where 𝛼 behaves as a bulk viscosity, 𝛽 regulates the particles’ interpenetration, 𝑈𝑖𝑗 = 𝑈(𝑥𝑖 , 𝑡) − 𝑈(𝑥𝑗 , 𝑡), 𝑥𝑖𝑗 =

𝑥𝑖 − 𝑥𝑗, and 𝜁𝑖𝑗  is defined as  
 

 𝜁𝑖𝑗 =
ℎ

𝑥𝑖𝑗
2 𝑈𝑖𝑗𝑥𝑖𝑗 .  (16) 

 

 Hence, the eq. (1) and (2) assume the following discretized form: 
 

 〈
𝐷𝐻(𝑥𝑖 , 𝑡)

𝐷𝑡
〉 = −

𝑐2

𝑔

∑ [𝑈(𝑥𝑗 , 𝑡) − 𝑈(𝑥𝑖 , 𝑡)]
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑖
𝑗=1

∑ (𝑥𝑖 − 𝑥𝑗)
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑖
𝑗=1

,  (17) 

 

and 
 

 〈
𝐷𝑈(𝑥𝑖 . 𝑡)

𝐷𝑡
〉 = −𝑔

∑ [𝐻(𝑥𝑗 , 𝑡) − 𝐻(𝑥𝑖 , 𝑡)]
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑖
𝑗=1

∑ (𝑥𝑖 − 𝑥𝑗)
𝜕𝑊𝑖𝑗

𝜕𝑥𝑖𝑗

𝑚𝑗

𝜌𝑗

𝑛𝑖
𝑗=1

−
4 〈𝜏(𝑥𝑖 , 𝑡)〉

𝜌 𝑑
− ∑ 𝛱𝑖𝑗

𝜕𝑊𝑖𝑗

𝜕𝑥𝑖𝑗

𝑚𝑗

𝑛𝑖

𝑗=1

, (18) 

 

where 〈𝜏𝑖〉 is the unsteady shear stress calculated for the ith path using eq. Then, we calculate the velocity and the 

manometric height time derivatives at each time step using eq. (17) and  and integrate them in time with the Euler 

method. 

4  Error measurement 

The current work used the 𝐿2-norm metric to calculate error values. The metric is defined as  
 

 𝐿2 = √
∑ (𝑓(𝑡𝑗) − 〈𝑓(𝑡𝑗)〉)

2𝑇
𝑗=1

∑ 𝑓(𝑡𝑗)
2𝑇

𝑗=1

, (19) 

 

where 𝐿2 is the relative error value, 𝑓(𝑡𝑗) is the experimental value, 〈𝑓(𝑡𝑗)〉 is the numerical value, and 𝑇 is the 

total number of time steps. 

5  Experimental and numerical setup 

 

The physical problem consists of a reservoir with a constant pressure head of 𝐻𝑅, a tube with a length of 

15.220 m and a diameter of 0.020 m, and a downstream valve. The pipe's roughness measures 1 mm, and it 

contains water with a density of 1000 kg/m³ and a kinematic viscosity of 1.040 ×  10−6 m²/s. The experiment 

employed a gravity acceleration of 9.806 m/s² and a sonic wave speed of 1250 m/s.  

Figure 1 shows a 1D reservoir using the SPH method: ℎ denotes the smoothing length, ∆𝑥 is the distance 

between particles' centers, and 𝑊 represents the smoothing function. The black particle is where the kernel 

function is applied, and its neighboring particles are the two preceding and two succeeding particles within the 

compact domain. The pressure at the tube upstream is set as the reservoir's constant pressure. A maneuver equation 

models a valve downstream.    

 

 

Figure 1. Reservoir-pipe-valve system 1D scheme filled with particles along the x-axis. 
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The system is similar to the one used by Martins et al. [2]. Thus, the first test was set with 𝑄0 = 0.717 × 10−4 

m³/s, ℜ0 = 4540 and 𝐻𝑅 = 46.140 m; while the second experiment has 𝑄0 = 0.961 × 10−4 m³/s, ℜ0 = 6089 

and 𝐻𝑅 = 45.360 m. Furthermore, the current study employed the valve maneuver modeled by Martins et al. [2]. 

They use the following relationship between the discharge, 𝑄𝑣 , and the pressure head, 𝐻𝑣 , at the downstream end 

section of the pipe: 
 

 𝑄𝑣 = ξ 𝑄0√
𝐻𝑣

𝐻𝑅

, (20) 

 

where ξ is the percentage of the valve opening state, with ξ = 1 being a completely open valve and ξ = 0 represents 

a complete close valve. Martins et al. [2] used a hyperbolic model, 
 

 𝜉 = 1 −  (
𝑡 − 𝑡𝑖

𝑡𝑐 − 𝑡𝑖

)
8

, (21) 

 

in their work, where 𝑡𝑖, is the initial time of the closure; and 𝑡𝑐 is the closure time. The closure process dour 0.034 

s, initializing at 0.269 s and ending at 0.303 s. Moreover, there are 0.269 s of steady-state flow before closing the 

valve, and the simulation has a total of 1.000 s with 62875-time steps. The final input values to run the simulation 

are the spatial step, ∆𝑥 = 0.020 m, the particles mass, 𝑚𝑗 = 𝜌𝑗 ∆𝑥 ∆𝑦 ∆𝑧 = (1000 kg/m³)(0.020 m)(1 m)(1 m) = 

20 kg, the artificial viscosity variables, 𝛼 = 2.000 and 𝛽 = 0.000, and the smoothing length, h = 𝜓 ∆𝑥 = 

(1.400)(0.020 m) =  0.028 m. Additionally, the Courant-Friedrichs-Lewy number (CFL) is 0.994. 

6  Results and discussion 

Figure 2 shows the pressure head in the valve with the following parameters: (a) with 𝑄0 = 0.717 × 10−4 m 

and 𝐻𝑅 = 46.140 m, and (b) with 𝑄0 = 0.961 × 10−4 m³/s and 𝐻𝑅 = 45.360 m. Between 0.269 s and 0.794 s, 

both the SPH and MOC methods aligned with experimental results, depicting the pressure wave amplitude and 

frequency reduction. Furthermore, the numerical wave shape changed from a squarish form to a sinusoidal form, 

matching the experimental outcome.  

 
(a) 

 

(b) 
 

  
 

Figure 2. Dimensionless experimental, in blue, and numerical results. (a) Q0 = 0.717 × 10−4 m and HR =

46.140 m, and (b) Q0 = 0.961 × 10−4 m³/s and HR = 45.360 m. 

 
There is an error in the valve maneuver model, causing the numerical results to show an early pressure rise. 

The SPH method shows a non-physical overshoot in the first wave peak, which was fixed by pre-smoothing it 

using the smoothing features of the CSPH function approximation in eq. (13) [12]. That was done on the velocity 

distribution in the first seven-time steps after commencing the valve maneuver, two steps before valve closure, 

and seven steps after valve closure. The pre-smoothed CSPH results are in Fig. 4a, where the overshoot is reduced, 

but there is still an offset phase difference. This phase difference is also in Fig. 2, which increases over time. Both 

methods have an offset phase, but it is more pronounced in the SPH method. 

The SPH method had an error value almost twice as large as the MOC method's error value, with values of 

0.330 and 0.146, respectively, after analyzing the data with Eq. (19). No significant increase in error was observed 
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for pre-smoothed data, but a slight offset increase was noted compared to the experimental results in Figs. 2 and 

4a. 

In Fig. 3a there is a smearing effect in the SPH simulation. That could be due to the particles' number, 

controlled by the ∆𝑥 value. The first peak and period of pressure history were predicted accurately, but subsequent 

peaks were not as precise. Increasing the number of particles can reduce the smearing effect. A study found that 

762 particles or ∆𝑥 = 0.02 m can produce satisfactory results. Qualitative results for any ∆𝑥 value were not 

significantly affected by the number of cells in the MOC method. However, the 𝐿2 error for the MOC method 

remained at 0.146 for ∆𝑥 ≤ 0.020 m, but increased to 0.189 for ∆𝑥 ≥ 0.040 m due to a slight shift in the last four 

peaks in Fig. 3b. 

 
(a) 

 

(b) 
 

  
(c) 

 

 
 

Figure 3. Obtained results by changing the ∆𝑥 value. (a) SPH results with 𝛼 = 2.0. (b) MOC results, and (c) SPH 

results with 𝛼 = 0.8. 

 
To ensure stability, the 𝛼 value of the artificial viscosity was reduced to 0.8. That eliminated overshoot on 

the first peak without any pre-smoothing treatment and avoided any smearing effect in the SPH results shown in  

Fig. 3c. The 𝐿2 error values for SPH results with 𝛼 = 0.8 remained around 0.350 for ∆𝑥 ≤ 0.020 m, and increased 

to 0.380 for for ∆𝑥 ≥ 0.040 m. 

 
(a) 

 

(b) 
 

  
 

Figure 4. Analysis of the first pressure peak shows distinct overshoot due to dispersion errors. Pre-smoothing 

technique (a) and artificial viscosity (b) effects observed. 

 
After examining Fig. 4b, it was found that artificial viscosity was necessary to prevent dispersion error in the 

initial peak. Adjusting the 𝛼 value to 0.1 mitigated the dispersive errors, with only a slight overshoot on the 

pressure peak's left side. However, 𝛼 ≥  1.6 caused dispersive errors to resurface and increase. A high 𝛼 value can 



F. Author, S. Author, T. Author (double-click to edit author field) 

CILAMCE-2023 

Proceedings of the XLIV Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC  

Porto – Portugal, 13-16 November, 2023 

 

also cause pressure to smear, as observed when 𝛼 = 2.0, which resulted in a prominent smearing effect displayed 

in Fig. 3a. With an appropriately adjusted 𝛼, the SPH remains stable relative to the number of particles, but there 

was an offset from the experimental results, which may indicate the CSPH corrective equations are responsible. 

There is a difference in running time of simulation between the SPH and MOC methods when using an 

Intel(R) Core(TM) i5-8265U CPU 1.60 GHz 1.8 GHz 12.0 GB RAM Windows x64. On average, the SPH method 

is 7% to 15% faster than the MOC method, Tab. 2.  

 
Table 2. Running time of simulations in seconds for each numerical method. 

 

 ∆𝑥 (m) 

Methods 0.08 0.04 0.02 0.01 0.005 0.0025 

SPH 4.556 17.740 72.025 281.380 1183.520 4433.690 

MOC 5.404 19.093 84.534 310.852 1222.514 4707.004 

7  Conclusions  

The present study compares the SPH and MOC methods. An unsteady friction model is incorporated to 

account for the effects of friction on hydraulic transient phenomena. The findings reveal that while both methods 

initially align with experimental data, the SPH encounters difficulties during valve maneuvers and requires pre-

smoothing techniques to reduce errors and eliminate smearing effects despite having advantages in computational 

efficiency. Additionally, SPH produces higher errors than MOC. The study emphasizes the importance of refining 

hydraulic transient modeling and highlights the role of artificial viscosity in achieving stability. Finally, it 

acknowledges the potential and challenges associated with SPH in simulating hydraulic transients. 
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