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Abstract. This work presents a computational model for the simulation of the rheological behavior of 3D-printed
fresh concrete. Our approach is based on the discrete element method (DEM) for description of the particles’
overall dynamics, combined with the Discrete Fresh Concrete (DFC) model [1] to account for particle-particle
and particle-wall interactions at the level of the (contact) constitutive equation. Using the DFC model, we hope
to be able to represent the interaction among coarse aggregate particles within a fine mortar matrix. This is an
on-going research that is part of a master’s dissertation, and only the theoretical framework will be presented by
now. Numerical results shall appear soon.
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1 Introduction

Recently, the construction industry has undergone a revolutionary advancement with the introduction of 3D
Concrete Printing (3DCP). It offers several advantages over traditional construction methods, including: (1) greater
flexibility in architectural design; (2) significant reduction in construction time and material waste; and (3) en-
hanced sustainability, and cost-effectiveness. However, there are still some uncertainties and technological chal-
lenges that need to be addressed before 3DCP can be widely adopted in the construction industry, including: (1)
current 3D printing technologies require improved materials in order to reach their full potential; (2) concrete rhe-
ological characteristics need to be considered when developing new 3D printing technologies; and (3) the required
pumping and extrusion pressure during the 3DCP process.

To address the challenges associated with 3DCP, numerical simulation may be an effective tool. Considering
that fresh concrete has a rather discrete (and two-phase) nature at the level of the coarse aggregates, the discrete
element method (DEM) stands as a natural approach. First introduced by Cundall in the 1970s [2, 3] and further
refined by Cundall and Strack [4], DEM can be understood as a model for the representation and study of granular
materials. It proposes to numerically solve the differential equations of motion for systems composed by a large
number of rigid solids (”discrete elements” or ”particles”) [5]. In DEM simulations, these individual particles are
treated as discrete entities, and their interactions are governed by simple mechanical laws, such as contact forces,
frictional forces, and others. By tracking the motion of each (and all) individual particles and considering their
interactions, DEM provides valuable insights into complex phenomena at any desired time instant. This includes
individual particle trajectories, forces interacting, interactions among neighboring particles, and many other factors
that are challenging to obtain through experimental techniques.

This article presents an approach that combines the DEM formulation for modeling particle dynamics with the
DFC model equations to account for particle-particle and particle-wall interactions in fresh printable concrete. The
DFC model, introduced by Cusatis and Ramyar [1], is based on stress-strain relationships to represent the contact
interactions, and, when used in the DEM framework, provides an accurate description of the interactions among
coarse aggregate particles within a fine mortar matrix. They idealize each particle as spheres with two phases:
(i) a rigid inner sphere (representing the aggregate) and (ii) a soft outer layer, covering the first (representing the
mortar), with a known thickness. Our approach adopts the DEM formulation developed by Campello [5–7] and
Quintana-Ruiz and Campello [8] for the mechanical part of the problem. This is an on-going research that is part

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023



DEM for predicting 3D-printed concrete process parameters

of a master’s dissertation, and only the theoretical framework will be presented by now. Numerical results shall
appear soon.

2 Methodology

In this work we incorporate the DFC model, developed by Cusatis and Ramyar [1], to describe contact
between particles (and between particle and wall) in our in-house DEM code. Our main objective is to simulate
the rheological behaviour of printable fresh concrete for 3D concrete printing. It is important to mention that this
research is in initial development phase, and we anticipate further advances as we continue our work. The results
of this study will be presented at the congress.

2.1 Particle’s Dynamics and Discrete Fresh Concrete

2.1.1 Particle’s Dynamics

In this study, we adopt a Lagrangian DEM description. Let us consider a system of NP spherical ”biphasic”
particles, consisting of a rigid inner sphere covered by a thin layer of soft mortar on the outside, each character-
ized with essential properties, including mass mi, radius Ri, aggregate radius ri, mortar thickness hi (Fig. 1) and
rotation inertia ji (relative to particle’s center). To mathematically describe their motion, we represent the position
vector of each particle as xi, the velocity vector as vi, the incremental rotation vector as α∆

i (rotation vector rel-
ative to two consecutive configurations) and the spin vector as ωi. Following classical (Newton-Euler) dynamics,
the equations of motion for the ith particle are

miv̇i = f con
i + fenv

i ,

jiω̇i = mrol
i ,

(1)

where f con
i are the forces due to mechanical contacts with other particles or walls and fenv

i are the forces due
environment (in this study, we take only the gravitational contribution mig, where g is the gravity acceleration
vector). Still in eq. (1), mrol

i are the moments induced by rolling resistance effects. It is important to mention that
there are works in the literature that incorporate additional forces into the model, such as frictional forces, adhesive
forces, drag forces, among others [5–8]. The forces due to mechanical contacts with other particles or walls, f con

i ,
are calculated as the sum of the forces acting on particle i due to the contact with all other particles or objects. This
is described in eq. (2), where f con

ij is the force acting on particle i due to the contact with particle j, and N c
i is the

number of particles and objects in contact with particle i.

f con
i =

Nc
i∑

j=1

f con
ij with f con

ij = −4

3

√
r∗E∗δ

3/2
ij nij − dconδ̇ijnij , (2)

with

r∗ =
rirj

ri + rj
E∗ =

EiEj

Ej(1− ν2i ) + Ei(1− ν2j )
nij =

xj − xi

||xj − xi||
, (3)

where r∗ and E∗ are the effective radius and effective elasticity modulus of particle pair i − j (with Ei and νi
the elasticity modulus and Poisson coefficient of particle i and the Ej and νj the elasticity modulus and Poisson
coefficient of particle j), respectively; nij is the unit vector that points from the center of particle i to center of
particle j; and δ̇ij is the overlap velocity of the pair. Still in eq. (2), δij is the overlap between particles and dcon is
the damping constant, which is given by

δij = ri + rj − ||xi − xj ||, (4)

and
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dcon = 2ξcon
√
2E∗m∗

√
r∗δ

1/4
ij with m∗ =

mimj

mi +mj
, (5)

where ξcon is the damping rate and m∗ is the effective mass of pair i − j. For the rolling resistance, is used a
rotational spring-damper-slider model. Accordingly, for every contacting pair i− j, we initially consider an elastic
trial stick state (i.e., one in which there is no rolling) where the rolling resistance moment is

mrol
i =

Nc
i∑

j=1

mrol
ij with mroltrial

ij = −krol∆θtrial
ij − drolωij with drol = 2ξrol

√
j∗krol, (6)

where mrol
ij is the rolling resistance moment acting on particle i due to its rolling on particle j, krol is the stiffness

of the rotational spring, ∆θtrialij is the pair’s trial rotation, drol is the rolling damping constant, ξrol is the rolling
damping rate, and j∗ is the rotational inertia of pair i− j.

This section shows how the conventional DEM works, and the contact model from eq. (2) to eq. (6) will be
replaced by a model based on constitutive equations, which is the DFC.

2.1.2 Discrete Fresh Concrete (DFC)

The DFC model uses DEM principles with stress-strain relationships to more accurately represent the be-
havior of fresh concrete. Specifically, the model is designed to accurately represent mortar-to-mortar contact, i.e.,
between the outer layers of each particle. As a result, the equations of motion (eq. (1)) for the ith particle can be
reformulated as

miv̇i = fdfc
i + fenv

i

jiω̇i = mdfc
i ,

(7)

where fdfc
i are the forces on particle i due to mechanical contact between particles (or between particle and wall),

fenv
i are the forces on particle i due environment that may arise from the possible existence of gravitational, electric

and/or magnetic fields, mdfc
i are the moments on particle i induced by other particles or walls. The calculation of

the forces and moments acting on the particle due to its interactions with other particles and walls are

fdfc
i =

∑
j

Aijσij

mdfc
i =

∑
j

Aij(ai × σij)
(8)

where σij is the stress on particle i at the contact point with particle j and ai is the vector from the center of
particle i to the contact area center. The contact area Aij is given by,

Aij = π(Hij)
2. (9)

Given that particles are spherical, the contact area formed between two particles or between a particle and a wall
can be modeled as a circle with radius Hij , which is calculated as follows:

Hij =
√
(Ri)2 − (ai)2 and ai =

(Ri)
2 − (Rj)

2 + (Lij)
2

2Lij
, (10)

where ai is the distance from the center of particle i to the contact area center and Lij is the distance between the
center of particle i and j (or object), which is given by

Lij = ||xj − xi||. (11)
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Still in eq. (8), to calculate σij and ai, it is necessary to establish a local Cartesian reference system, Fig. 1c. This
reference system is based on the motion of particles i and j according to the classical Lagrangian formulation. The
unit vector eijN is oriented along the line segment connecting the center of the two particles, which is calculated as
follows:

eijN =
xj − xi

Lij
. (12)

To fully establish the local Cartesian reference system, the unit vector eijM is calculated using the direction of
the tangential relative velocity between particle i and j (or object) at the point of contact vP

rel,t, and the unit vector
eijL is oriented forming a right-handed coordinate system. The unit vectors eijM and eijL are given by

eijM = ||vP
rel,t − (vP

rel,t · e
ij
N )eijN ||, eijL = eijN × eijM . (13)

where, vP
rel,t is calculated from the relative velocity at contact point vP

rel, which are given by

vP
rel,t = vP

rel − (vP
rel · e

ij
N )eijN , vP

rel = vj + ωj × aj − vi + ωi × ai, (14)

Given the distance ai, the vector ai is calculated as follow:

ai = aie
ij
N . (15)

(a) (b) (c)

Figure 1. (a) general configuration of two interacting particle; (b) contact area; (c) local Cartesian reference system

Still in eq. (8), σij is the sum of stiffness stresses σs with the viscous stresses σv , which is given by

σij = σs + σv with, σs =


σNs

σMs

σLs

 and σv =


σNv

σMv

σLv

 (16)

where, to calculate σs and σv we consider the current configuration of the particle pair, which is defined by the
relative position between them. In a generic configuration (Fig. 1a), the contact between two particles starts when
Lij < ri + rj + 2h and the equilibrium configures when Lij = Lij0 = ri + rj + h, where h is the mortar layer.
Which means that, when two particles are in contact and Lij > Lij0, they are in tension (and we called it soft
contact) and this is the case when particles are with attractive forces. Similarly, when Lij < Lij0 and Lij > ri+rj ,
compression appears (also called it soft contact), causing repulsive forces. In addition, when Lij = Lij0, we are
in zero (or neutral) configuration, and then no force is applied. Finally, when Lij = ri + rj , the aggregates of
particles i and j are in contact (and we called it hard contact). When in tension (Lij > Lij0) or compression, i.e.
soft contact, (Lij < Lij0 and Lij > ri + rj), σs and σv are
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σs =


ENmεijN

0

0

 σv =


βη(γ̇)ε̇ijN

η(γ̇)ε̇ijM

η(γ̇)ε̇ijL

 , (17)

otherwise, when hard contact develops, i.e. Lij = ri + rj , σs and σv are

σs =


ENaε

ij
N

αaENaε
ij
M

αaENaε
ij
L

 σv =


βη(γ̇)ε̇ijN

η(γ̇)ε̇ijM

η(γ̇)ε̇ijL

 , (18)

where ENm is the mortar normal elastic modulus, ENa is the aggregate normal elastic modulus, αa is the normal-
shear coupling parameter and

ε̇ijN =
vP

rel · e
ij
N

Lij
, ε̇ijM =

vP
rel · e

ij
M

Lij
, ε̇ijL =

vP
rel · e

ij
L

Lij
, (19)

are the strain rates in direction N, M and L. Still in eq. (17) and eq. (18), η(γ̇) is the apparent viscosity, which is
given by

η(γ̇) = η0 = κ0η∞ if γ̇ ≤ γ̇0

η(γ̇) = η∞|γ̇|n−1 if γ̇0 < γ̇
(20)

and

γ̇ =
√

βε̇2N + ε̇2M + ε̇2L and γ̇0 = στ0/η0 (21)

where στ0 is the shear yield stress, κ0 = 100 is a constant, η∞ is the mortar plastic viscosity and n refers to
Newtonian (n = 1), shear-thickening (n > 1), and shear-thinning (n < 1) flow.

The interaction between particle and surfaces, considers any surface as padded and characterized by a thick-
ness p. The interaction between particle and surface is identical to the particle-particle model. The differences in
this case are: (i) the center to center distance Lij is replaced by the shortest distance between particle and surface;
(ii) the zero-configuration becomes L0 = ri+h/2+p; and (iii) the distance of particle i from the center of contact
area becomes ai = Lij−p. For more comprehensive details of the DFC formulation, readers may refer to (Cusatis
and Ramyar) [1].

3 Numerical Solution Scheme

To solve the mechanical problem, we integrate the governing equations (eq. (7)) numerically by means of an
explicit (forward Euler) scheme. We obtain the values of position, velocity, spin and incremental rotations at time
ti+1 based on the known values at time ti. Then, we increment time by ∆t and transfer the information from i+1
to i (i←− i+1). Subsequently, the procedure is repeated until the final simulation time tF is reached. The eq. (22),
eq. (23), eq. (24) and eq. (25) represent the calculation of the particle’s velocity, spin, position and incremental
rotation at time ti+1, respectively.

vi(t+∆t) = vi(t) +
1

mi

∫ t+∆t

t

(fdfc
i + fenv

i )dt ≈ vi(t) +
∆t

mi
[fdfc

i (t) + fenv
i (t)], (22)
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ωi(t+∆t) = ωi(t) +
1

ji

∫ t+∆t

t

(mdfc
i )dt ≈ ωi(t) +

∆t

ji
[mdfc

i (t)], (23)

xi(t+∆t) = xi(t) + vi(t+∆t)∆t, (24)

α∆
i (t+∆t) = ωi(t+∆t)∆t. (25)

The solution process can be schematically seen in the following algorithm:

Solution Algorithm
Step 1 Initialize time variables and get initial conditions:

t = 0, ∆t = given

xi(0), vi(0), ωi(0), αi(0) = given (i = 1, . . . , Np)

Step 2 While t ≤ tfinal, loop over all particles: For i = 1, . . . , Np Do

Compute forces and moments at time t via eq. (8).

Update velocity, spin, position and incremental rotation vectors:

vi(t+∆t) = vi(t) +
∆t
mi

[fdfc
i (t) + fenv

i (t)],

ωi(t+∆t) = ωi(t) +
∆t
ji
[mdfc

i (t)],

xi(t+∆t) = xi(t) + vi(t+∆t)∆t,

α∆
i (t+∆t) = ωi(t+∆t)∆t

Save updated variables:

vi(t)←− vi(t+∆t),

ωi(t)←− ωi(t+∆t),

xi(t)←− xi(t+∆t),

αi(t)←− αi(t+∆t),

t←− t+∆t

4 Conclusions

In conclusion, this work presents an approach that combines the Discrete Element Method (DEM) with the
DFC model for modelling fresh printable concrete, in an attempt to simulate 3D Concrete Printing (3DCP). This
is an on-going research that is part of a master´s dissertation, and only the theoretical framework is presented by
now. Numerical results shall appear soon.
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