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Abstract. In aerospace environment, it is crucial to develop reliable dynamic models to accurately predict the 

structural behavior of aircraft. The established approach involves constructing numerical models using the Finite 

Element Method and utilizing experimental data for model updates and improvements. This paper focuses on the 

construction and updating process of dynamic models applied to Al-Al honeycomb sandwich panels, which serve 

as the main structure of the Brazilian Geostationary Satellite. Two numerical models are proposed to replicate the 

honeycomb plate's geometry, including a simple equivalent laminated plate, and a face plate-equivalent solid core 

model. Experimentally obtained parameters are utilized to update the numerical models using a Bayesian 

optimization algorithm, which finds equivalent values for physical parameters enhancing the numerical-

experimental correlation of natural frequencies. Since this process is probabilistic, Monte Carlo simulations are 

performed to ensure convergence of the obtained values. The results demonstrate that even the lower complexity 

equivalent plate model can adequately represent the panel, making it suitable for preliminary analysis and saving 

computational time compared to the higher complexity model. Overall, this paper presents a comprehensive 

approach to constructing and updating dynamic models of honeycomb sandwich panels, demonstrating their 

effectiveness in accurately capturing the dynamical behavior of aerospace structures. 
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1  Introduction 

Aerospace structures are commonly exposed to diverse and severe dynamic loads, which may lead to 

unwanted dangerous vibrations in aircraft during operation. Therefore, it is evident the need of developing reliable 

and trustworthy models during the design phase to predict structural behavior correctly and accurately in aircraft 

operation. The established approach involves the construction of numerical models using the Finite Element 

Method (FEM), which allows quick experimentation and study of parameters in the model. Also, this model may 

be adjusted using experimental data, using a model updating algorithm, given that uncertainty is always present in 

constructed models and is of great influence in modeling, as shown and reviewed by Jorge [1]. 

These algorithms have as their objective to maximize the correlation between numerical and experimental 

data, being widely used, for example, to improve numerical models in early design phases and real-time updating 

of structural models for Structural Health Monitoring (SHM). The model updating problem is an inverse problem 

in which the outputs are known, and it is of interest the identification of associated input parameters through an 

unknown function described by the numerical model which gives the desired output.  

Several approaches have been proposed to develop a reliable model updating algorithm, as seen in articles 

using Bayes Inference as constructed by Marwala and Sibisi [2] and Carlon [3], or heuristic and genetic methods, 

as overviewed by Choze [4] and applied by Gaspar [5]. In this article, the use of an optimization algorithm is 

proposed to solve the model updating problem, namely the Bayesian Optimization Algorithm (BOA). This 

algorithm involves the minimization of an objective function, with associated inputs and cost. BOA proposes an 

algorithm that performs well when the evaluation of the objective function is costly, allocating some time resources 



Dynamic Model Updating of Al-al Honeycomb Sandwich Panels for Aerospace Applications 

CILAMCE-2023 

Proceedings of the XLIV Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC  
Porto – Portugal, 13-16 November, 2023 

to evaluating an acquisition function, that indicates the next point with the best improvement probabilities. This is 

done by performing a Gaussian Process Regression (GPR) on known points, obtaining a mean function value and 

associated confidence interval. Then, using the mean and standard deviation of all regressed points the acquisition 

function expresses the next best point to evaluate. For this work, only honeycomb core properties will be explored 

in the model-adjusting process. 

In the following sections, BOA is better described and formulated. Then it is used with experimental 

modal data obtained experimentally from impact testing on an Al-Al honeycomb sandwich panel to create an 

accurate numerical model. The objective function is modeled as an error function between the first five numerical 

and experimental non-rigid body modes natural frequencies. Finally, results for the natural frequencies and modes 

are presented. 

2  Mathematical Background 

2.1 Dynamic Systems 

Gomes [6] describes that for a dynamic system, neglecting damping effects, it is possible to calculate its 

modes and natural frequencies for structural systems according to: 

 

 (−𝜔2𝑴 + 𝑲){𝜙} = 0. (1) 

 

This equation represents an eigenvalue problem in which the matrices K and M are the stiffness and mass 

matrices respectively, 𝜙 is a mode vector and 𝜔² is the corresponding squared natural frequency. With FEM it is 

possible to construct K and M matrices allowing the resolution of the eigenvalue problem obtaining modes of 

vibration and associated natural frequencies for a system. These parameters will allow a comparison of the 

numerical model to be constructed with the experimental data obtained. 

2.2 Bayesian Optimization Algorithm 

Optimization algorithms strive to obtain the maximum or minimum of a given objective function. These 

problems consist of input parameters, an objective function, and associated costs. For the given problem, the 

objective function is modelled as follows: 

 

𝑓(𝜃) = ∑ (𝑎𝑖 ⋅
𝜔𝑖

(𝑛𝑢𝑚)
(𝜃) − 𝜔𝑖

(𝑒𝑥𝑝)

𝜔𝑖

(𝑒𝑥𝑝)
)

𝑛

𝑖=1

. 
(2) 

 

Where 𝜃 is the vector of input parameters, 𝑓(𝜃) is the cost of the objective function associated with the 

𝜃 input parameters, and 𝑎𝑖 is a weighting factor associated with the 𝜔𝑖 natural frequency. This way, if better 

correlation in the first mode is desired, the weight 𝑎1 should be of higher value compared to the others. 

It should be noted that for every iteration of the objective function given in eq. (2), a full modal numeric 

analysis must be performed to obtain numerical natural frequencies, which can be quite resource-demanding when 

the complexity of the model is high. Thus, BOA offers a tradeoff, allocating some computational efforts into 

calculating the point associated with the best improvement chances, through the evaluation of an acquisition 

function, thus minimizing the number of iterations of the objective function, as stated by Snoek [7]. The algorithm 

does that by using some stochastic linear regression, commonly the GPR, on some initial observed data, given by 

some random evaluated points, which describes the function as a Gaussian Process (GP), defined by a mean 

function and a covariance function. Wang [8] states that the GP that describes the regression is given by: 

𝑓∗|𝑓, 𝑋, 𝑋∗ ~ 𝒩 (𝛴∗
𝑇(𝛴 + 𝛿𝑦

2𝐼)𝑓,  𝛴∗∗ − 𝛴∗
𝑇(𝛴 + 𝛿𝑦

2𝐼)
−1

𝛴∗). (3) 
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This notation describes the mean function and the covariance function of the GP on unobserved points 𝑓∗, 

given the known data from observed points 𝑓 on the domain 𝑋, 𝑋∗. 𝛿𝑦 is a white noise hyperparameter associated 

with observations, 𝐼 is the identity matrix, and Σ is the kernel function, associated with the correlation between 

close points in the domain. Several kernel functions exist, and these describe the overall shape of the regressed 

function. For this work, it was used the Matern 5/2 kernel function, described below, as Snoek [7] concludes that 

this kernel function is well suited for optimization problems.  

 

𝛴(𝑥𝑖 , 𝑥𝑗) = 𝜎 (1 + √5
𝑥𝑖 − 𝑥𝑗

𝑙
+

5

3
(

𝑥𝑖 − 𝑥𝑗

𝑙
)

2

) 𝑒−5 
𝑥𝑖−𝑥𝑗

𝑙 .  
(4) 

 

Where 𝑥𝑖 , 𝑥𝑗  are points in the 𝑋, 𝑋∗ domain, 𝜎 is the verticality hyperparameter and 𝑙 is the horizontality 

hyperparameter. 

With the regressed function, it is possible to obtain a mean value and a confidence interval given by the 

standard deviation at each point in the domain. Since the objective is to obtain the global minimum in the given 

domain, the acquisition function should return points that either have a low mean or a high standard deviation 

(have not been explored by the algorithm). This is done by the Expected Improvement (EI) function, which 

maximizes where the function is expected to have the best improvement when evaluated. Kamperis [9] describes 

the EI as: 

 

𝐸𝐼(𝑥, 𝜆) = (𝜇 − 𝑓(𝑥∗) − 𝜆) ⋅ 𝛷 (
𝜇 − 𝑓(𝑥∗) − 𝜆

𝜎
) + 𝜎 ⋅ 𝜑 (

𝜇 − 𝑓(𝑥∗) − 𝜆

𝜎
). 

(5) 

 

In this equation, 𝜇 and 𝜎 are the mean and standard deviation of the regressed point x, 𝑓(𝑥∗) is the 

minimum regressed value, 𝜙 and Φ are the probability density function (PDF) and the cumulative density function 

(CDF) respectively and 𝜆 is an exploration hyperparameter, that defines whether the algorithm should exploit 

already found minimum values or explore uncertain areas in the domain.  

Since the process is stochastic, depending on initial random values, the process is repeated several times 

to check if results converge within a confidence interval, resulting in a Monte Carlo simulation. 

Thus, the BOA can be described in the following steps: 

1. Define a domain 𝑋, 𝑋∗ for the analyzed parameters 𝜃; 

2. Choose 𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙  random points to sample in the domain and evaluate the objective function; 

3. Perform GPR on observed points and evaluate the EI function; 

4. Choose the next evaluation point and repeat step 3 𝑁𝑜𝑏𝑠 times; 

5. Get the minimum regressed value and associated parameters; 

6. Perform 𝑁𝑀𝐶  Monte Carlo simulations to check convergence of the algorithm. 

3  Materials and Methods 

For this work, experimental data was obtained from an Al-Al honeycomb sandwich panel, provided by 

the Brazilian Space Agency. The panel is composed of two aluminum 2024 T3 plates 0.3 mm thick, with a HexWeb 

CRIII – Al 5056 – 1/4” – 0,001P (10P) honeycomb core with 14.4 mm thickness, totaling 15 mm. The panel is 

280 mm long in the L direction and 300 mm in the W direction. For the collection of data, impact modal testing 

was conducted using 49 measurement points distributed along the panel, processing data on SimCenter Testlab 

Software. Full experimental details were written by Domingues [10]. Data on the properties of the honeycomb 

core are available by Hexcel [11] and presented in Table 1. Finally, the mechanical properties of the aluminum 

2024 T3 are available in MatWeb [12]. 

As for the numerical models, two are proposed. The first, of lower complexity, is generated using Ansys 

APDL SHELL181 element, and laminating it into three layers. The bottom and top layers are modeled with 

isotropic aluminum 2024 T3 with 0.3 mm of thickness and the middle layer is modeled as an orthotropic equivalent 

material for the honeycomb structure of 14.4 mm of thickness, totaling 15 mm thickness. This model is presented 
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in Fig. 1a, modeled by 900 elements. The panel is in the XY plane, while the Z direction is normal to the plate. 

The X direction corresponds to the W direction and the Y direction is in the L direction. 

 

 

 

Table 1. Mechanical Properties of the honeycomb panel [11]. 

Equivalent 

Density 

Shear Modulus  

𝐺𝐿 

Shear Modulus 

𝐺𝑊 

Compressive 

Modulus 𝐸𝑡 

82 g/m³ 221 MPa 103 MPa 400 MPa 

 

 

 

(a)      (b)  

Figure 1. Models of the honeycomb sandwich panel in Ansys APDL (a) Laminated Plate Model (b) Solid-Shell 

Model 

The second model is modeled with two SHELL281 aluminum plates connected by a SOLID185 

orthotropic material, being presented in Fig. 1b, totaling 6952 elements. This model requires more computational 

resources due to different types of elements and contact modeling, however, it may be more suited for certain types 

of applications, for example, the delamination of the honeycomb structure and the plate. Thus, both models are 

well suited for different cases and design phases, and BOA is used to estimate the parameters of the orthotropic 

equivalent material in both cases. In this article, both shear moduli of the honeycomb core in the XZ and YZ planes 

(W and L direction, respectively) will be optimized in a two-dimensional problem to better suit the natural 

frequencies of the numerical model to the ones observed. 

The parameters used during simulations are shown in Tab. 2.  

Table 2. Parameters used during simulations. 

Parameter Laminated Plate 

Model 

Solid-Plate Model 

𝐺𝑋𝑍 range 50-400 MPa 50-400 MPa 

𝐺𝑌𝑍 range 50-400 MPa 50-400 MPa 

𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙  10 5 

𝑁𝑜𝑏𝑠 30 25 

𝑁𝑀𝐶  30 30 

𝜆 0.05 0.1 

𝑎1 5 5 

𝑎2, 𝑎3 3 3 

𝑎4, 𝑎5 1 1 
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4  Results and discussion 

Tables 3 and 4 show the adjusted parameters for both models. These values are shown with the mean and 

standard deviation of the values obtained on each iteration over the Monte Carlo simulations. These values will 

show how well the algorithm is converging and to which value it is converging, measured by a variation coefficient 

(CV) given by the division of the standard deviation by the mean value. For comparison, the parameters for the 

honeycomb core from Table 1 are repeated. 

Table 3. Obtained adjusted parameters for the laminated panel model. 

Parameter Manufacturer 

parameters 

Adjusted Mean Adjusted Standard 

deviation 

CV 

𝐺𝑌𝑍 221 MPa 247 MPa 27.7 MPa 11.2% 

𝐺𝑋𝑍 103 MPa 119 MPa 10.1 MPa 8.46% 

Table 4. Obtained adjusted parameters for solid-plate model. 

Parameter Manufactures 

parameters 

Adjusted Mean Adjusted Standard 

deviation 

CV 

𝐺𝑌𝑍 221 MPa 364 MPa 29.9 MPa 8.22% 

𝐺𝑋𝑍 103 MPa 145 MPa 8.01 MPa 5.54% 

 

From these results, it is observed that data converges to large results, providing shear moduli above the 

expected from manufacturers data. It is also shown through the values of CV that data converges better for the 

solid-shell model despite fewer observations being made on each iteration. This might be due to the larger 

exploration coefficient 𝜆 or the different modeling compared to the laminated model and is a topic worth 

investigating. 

Even though parameters differ from what is expected, Tab. 5 and 6 show that experimental natural 

frequencies and frequencies for the adjusted model are in great accordance with experimental results. These 

frequencies were obtained using the mean value from the Monte Carlo simulations. For means of comparison only, 

frequencies were calculated using the manufacturers data and presented as an initial guess for the model. 

Table 5. Comparison of natural frequencies for the laminated plate model. 

Mode Experimental 

(Hz) 

Initial Guess 

(Hz)  

Error 

(%) 

Adjusted Model 

(Hz) 

Error 

(%) 

1 666.7 672.8 0.92 679.0 1.85 

2 1032 1028 0.36 1034 0.22 

3 1332 1276 4.20 1292 2.83 

4 1602 1593 0.31 1616 0.91 

5 1694 1645 2.88 1676 1.09 

Table 6. Comparison of natural frequencies for the solid-plate model. 

Mode Experimental 

(Hz) 

Initial Guess 

(Hz)  

Error 

(%) 

Adjusted Model 

(Hz) 

Error 

(%) 

1 666.7 656.5 1.53 673.5 1.02 

2 1032 1010 2.11 1031 0.04 

3 1332 1249 6.23 1290 3.14 

4 1602 1555 2.93 1624 1.39 

5 1694 1604 5.31 1683 0.66 
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For the laminated plate model, it is observed that some frequencies of the adjusted model stray further 

from the experimental results, however, the overall error of the first five natural frequencies is smaller than the 

initial guess. 

Meanwhile, in the solid-plate model, the initial guess is way worse when compared with the laminated 

model, however, the adjusted frequencies are all very much improved. Overall, the adjusted solid-plate model can 

be seen to better replicate the experimental natural frequencies, performing worse on the third and fourth modes 

but with significant improvements in the first and fifth modes. Nevertheless, the laminated plate model can also 

accurately represent the dynamical characteristics of the analyzed model, being advantageous for the lower 

complexity and computational time expended. 

In both models, it is observed that the initial guess underestimates every of the first five modes for the 

plate. Thus, it is expected that the algorithm would return bigger moduli, as shown in Tables 3 and 4. These results 

show that the overestimated adjusted parameters are likely due to the process of assembly of the plate when 

combining the aluminum plates with the honeycomb core, possibly due to resins that unite the core and the 

aluminum plates. 

 Also, it is shown a disparity between adjusted parameters when comparing both models. This is likely 

due to the different types of elements that are present in the more complex model, such as contact elements and 

interactions between different bodies. Thus, this opens the investigation on the effect of contact modeling in the 

numerical simulations and the definition of the orthotropic material. Nonetheless, both models achieved great 

correlation with experimental data, with errors of less than 3.5% for all modes. 

Finally, it is observed some degree of difficulty in recreating the third mode with precision in both models. 

Even though the numerical and experimental modes correspond to each other, as shown in Fig. 2, the numerical 

frequencies have significantly larger errors when compared with other modes. Improvements on this are currently 

being made, seen that for this work only the honeycomb shear moduli were adjusted, as these were deemed as the 

most uncertain parameters. However, several other parameters, such as the elastic and shear moduli of the 

aluminum plate or the honeycomb compressive modulus, may present related uncertainties, and sensibility studies 

are being held for the identification of which parameters are more influential on natural frequencies. Then, model 

adjusting will be performed with these parameters attempting to recreate an even more accurate model. 

 

 

(a)      (b)  

Figure 2. Third mode of vibration of the Al-Al honeycomb sandwich panel (a) Experimental [10] (b) Solid-Plate 

numerical model 

5  Conclusions 

Overall, model adjusting was successfully implemented with the use of BOA on both models of the plate. 

Even though adjusted parameters were above expected, natural frequencies show a great correlation to 

experimental data, with the more complex model presenting an overall better correlation when compared with the 

simpler model. This suggests that the honeycomb core properties may have been altered during the assembly of 
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the full panel.  

Furthermore, some topics are still relevant in the ongoing research. Some disparity is shown when 

comparing the adjusted parameters for the laminated-plate model and the solid-plate model. This opens the 

investigation on the effect of the contact elements during the definition of the equivalent orthotropic material for 

the honeycomb core. 

Also, it is discussed some struggles in recreating the natural frequencies of the third mode, opening the 

possibilities of future works to investigate the effect of other parameters on the natural frequencies of the panel 

through a sensibility study, performing model updating in higher-dimensional problems attempting to recreate a 

model with more accurate natural frequencies. 
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