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Abstract. In  this  work,  the  one-dimensional  nonlinear  equation  of  acoustic  wave  propagation  in  non-
homogeneous  fluid  was  developed  using  the  physical  laws  of  fluid  mechanics  and  thermodynamics  for  a
compressible fluid, including a source term for pressure wave generation. The solution of the 1D Acoustic Wave
equation is performed in the time domain using the Petrov-Galerkin Finite Element Method (FEM), and the
linear and parabolic approximation basis functions. In wave generation, two different types of pressure source
term were implemented, the Ricker type (Chacaltana [1]; Picolli [2]) and the sinusoidal type. The boundary
conditions of Neumann (natural reflection) and Reynolds [3] (Absorbing Boundary Condition - ABC) were also
implemented and tested. To test the model, a Fortran code was written and a graphical interface in Octave was
used to visualize and analyze the numerical results. Simulations were performed in a discrete domain of points
representing the one-dimensional mesh. The non-uniform distribution of discrete points was obtained by the
GMSH mesh generator. Numerical results were compared with those found in the literature. And, there was a
good agreement between them.
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1 Introduction

The study of Acoustic Waves propagation in non-homogeneous media has been the focus of study of many
researchers  due  to  the  large  number  of  applications  of  pressure  waves  (P-waves)  and  their  impacts  on
technological development (Sheu & Fang [4]). The range of applications for acoustics is wide and ranges from
the petroleum industry and communications sector to seismic exploration. As well as in the applications of high
frequency waves found in the field of medicine, from medical ultrasound such as lithotripsy or HIFU therapy to
ultrasonic cleaning or sonochemistry (Hoffelner  & Kaltenbacher [5]).  In this sense,  it  is  of great  interest  to
understand  the  transformations  of  the  Acoustic  Wave  during  its  propagation  and  interaction  with  the
environment as realistically as possible and in the most diverse scenarios. Thus, it is the object of this work to
develop the non-linear equation to analyze the propagation of the P-wave in a non-homogeneous medium.

The  Acoustic  Waves  propagation  was  studied  by  Kagawa  [6],  Campos-Pozuelo  [7]  and  Hoffelner  &
Kaltenbacher [5] who used the plane wave approximation of Hamilton & Blackstock [8] and solved the non-
linear form of the equation using a Finite Element Method - FEM. Other numerical methods used to solve the
linear and nonlinear equation of the Acoustic Wave in the time domain are Finite Difference Method - FDM
(Long [9]; Guimarães [10]) and Finite Volume Method - MVF (Pino [11 ]; Chacaltana [1]; Valente [12]).

In general, the classical Acoustic Wave equation is a linear and hyperbolic equation in the time domain
involving second derivatives both in time and space, as used by Chacaltana [1] and Araujo [13] who performed
pressure wave propagation (P-wave) in a layered homogeneous medium. The non-linear form involving only
first derivatives can be found in Piccoli [2], who performed P-wave propagation in a non-homogeneous medium
using FDM in the time domain. In this work, the one-dimensional nonlinear P-wave propagation equation for
non-homogeneous  medium  is  solved  using  FEM  in  the  time  domain.  The  mathematical  deduction  of  the
Acoustic Wave equation was obtained from the laws of conservation of mass and momentum and an equation of
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state,  considering a source term for pressure generation. The P-wave propagation model is manipulated and
placed into second derivatives both in time and space.

In this work, Weighted Residuals Method (Petrov-Galerkin) and the linear and quadratic basis functions
were used to solve the non-linear P-wave propagation equation by the FEM. The one-dimensional continuous
domain was represented by discrete points and non-uniformly distributed, forming a mesh of n elements. The
non-uniform distribution of points was obtained by the GMSH generator (v.4;11.1). At the domain boundaries,
Neuman's reflexive boundary condition (natural) and the absorbing or non-reflective boundary condition - ABC
as proposed by Reynolds (1978) were implemented.  To generate the acoustic signal,  two types of  pressure
sources  were  considered,  Ricker-type  wavelet  (Piccoli  [2])  and  a  monochromatic  harmonic  signal  of  the
sinusoidal type. The numerical stability criterion was implemented as proposed by Oden & Fost [14].

Numerical tests are performed comparing the linear and non-linear model results for homogeneous and
non-homogeneous  media.  Finally,  a  comparison  between  the  results  of  the  developed  model  and  the
experimental results is presented

2 Non-linear Acoustic Wave Equation for non-homogeneous medium

The pressure wave is a mechanical wave that is closely linked to the composition of the medium in which it
propagates.  The  P-Wave  equation  for  a  compressible  fluid  medium  is  developed  from  the  laws  of  fluid
mechanics and thermodynamics. Following Chacaltana [1] and Piccoli [2], the equations representing the laws of
conservation, mass and momentum, and thermodynamics for a compressible fluid and an isentropic process
(constant entropy) can be written, respectively, in 1D, as:

d ρ
dt

+ρ ∂u
∂ x

=Ṁ (1)

ρ du
dt

=−∂ p
∂ x

(2)

E=ρ c2 (3)

where  c [c2=(∂ p
∂ρ )

s] is the P-wave velocity for an isentropic process.  E [E=ρ dp
d ρ ]  the fluid compressibility

modulus.  Thus,  the  equation  of  state,  eq.  (3),  describes  the  compression  and  expansion  of  the  medium
(Lauterborn [15]).  ρ is the specific mass, p the pressure, u the fluid velocity and Ṁ a mass source.

Using eq. (3), the definition of compressibility modulus and the Lagrangian derivative, eq. (1) and eq. (2)
can be rewritten respectively as:

ρ
E

( ∂ p
∂ t

+u ∂ p
∂ x

)+ρ ∂u
∂ x

=Ṁ (4)

∂u
∂ t

+u ∂u
∂ x

=− 1
ρ

∂ p
∂ x

(5)

If the properties of the fluid are known, eq. (4) and eq. (5) represent a closed set of equations, for u and p. 
Taking  the  partial  derivative  in  time  in  eq.  (4)  and  using  eq.  (5)  we  obtain  the  equation  in  second

derivatives both in time and in space for the pressure.

∂
∂ t

( 1
E

∂ p
∂ t

)− ∂
∂ x

(1
ρ

∂ p
∂ x

)+ ∂
∂t

( u
E

∂ p
∂ x

)− ∂
∂ x

(u ∂u
∂ x

)=
P f
ρ (6)

Equations (5) and (6) form the non-linear model for P-wave propagation, where Pf is the pressure source
term.

2.1 Initial and Boundary Conditions

The initial conditions for eq. (6) at time t0 are:

p (x , t0)=p0 (7)
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∂ p (x , t0)
∂ t

= ṗ0 (8)

At  the  domain  boundaries,  the  boundary  conditions  are  the  Dirichlet  condition  (essential)  and  the
Neumman condition (natural), expressed respectively as:

p (xc , t )=pc (t) (9)

∂ p (xc , t)
∂ x

= pn(t) (10)

2.2 Source term

The pressure sources used to generate the acoustic signal are the Ricker type, which consists of generating
a pulse through the second derivative of Gaussian function; and the sinusoidal type to generate a monochromatic
harmonic signal. The implemented Ricker wavelet is, (Piccoli [2]):

Pf 1(t )=t0e(−0.25π f c
2 t0

2) (11)

where t 0=t−2√π
f

and t is the time for the generated pulse, and fc is the central frequency, defined in terms of
the cutoff frequency f:

f c=3 √f (12)

For the generation of the harmonic signal, a sinusoidal type source was implemented:

Pf 2(t )=A0 sin(−ω t ) (13)

where A0 is the initial amplitude, ω the angular frequency and t is the time. To smooth the beginning of the
simulation, multiply eq. (19) by a function w described by the behavior of the hyperbolic tangent:

w( t)=1
2
(1+ tanh (ωe (t−T env))) (14)

Thus, we have the second source term defined as the second derivative of the product of (13) and (14):

Pf =
∂2(Pf 2w)

∂ t2 (15)

2.3 Stability Criterion

The numerical  stability  criterion follows the criterion presented  by Oden & Fost  (1973) for  nonlinear
hyperbolic equations:

Δ t< √2h
2cmax

(16)

where h is the element size and cmax is the maximum wave speed.

3 Finite Element Method

The numerical solution of eq. (6) for the pressure is performed together with eq. (5) for the calculation of
the velocity u. In eq. (5) the pressure gradient is assumed to be known. And, in eq. (6) both the velocity and its
gradient  are  assumed to be known.  Applying the FEM to eq.  (5)  to minimize  the residue  produced by the
approximate solution multiplied by the weight function, w, we have:

< ∂ u
∂ t

,w >=<−1
ρ

∂ p
∂ x

, w >−<u ∂u
∂ x

, w> (17)

Performing the inner product for every one-dimensional domain, we have:
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∫w ∂ u
∂ t

dx=−∫w 1
ρ

∂ p
∂ x

dx−∫ wu ∂u
∂ x

dx (18)

On the right side of eq. (18), the pressure gradient is considered known and the non-linearity that appears in
the second term is linearized considering the velocity u known, both evaluated in the previous time "n-1".

∂
∂ t∫w udx=−∫ (∂ p

∂ x
)

n−1 w
ρ dx−∫un−1 w ∂ u

∂ x
dx (19)

Using  the  Weighted  Residuals  Method  (Petrov-Galerkin),  the  physical  quantity  of  interest  u can  be
assumed as the sum of its nodal values uj multiplied by the approximation basis functions Nj, which are equal to
the weight functions w (Ni), we have:

∂
∂ t∫N i(∑

i=1

Nn

u j N j)dx=−∫( ∂ p
∂ x

)
n−1 N i

ρ dx−∫un−1 N i

∂(∑
i=1

Nn

u j N j)

∂ x
dx (20)

where Nn is the number of nodes. Using finite differences in the time derivative, the discrete form of eq. (20) is.

{u }n−{u}n−1

Δ t ∫ N i N j dx=−∫(∂ p
∂ x

)
n−1 N i

ρ dx−{u}n−1∫un−1 N i
∂N j

∂ x
dx (21)

In matrix form, eq. (21) can then be written as:

{u}n=([R e ]−{u}n−1[Md ]) Δ t
[ M ]

+{u }n−1 (22)

where the matrix [Md] represents the non-linearity of the equation of motion.
Applying the same procedure to eq. (6), we obtain the matrix form for calculating the pressure, eq. (23):

{p }n+1=
Δ t2 c2 {P f }−Δ t2 c2[ K ]{ p}n−Δ t ([D ] {p }n−[ D ]{p}n−1)−Δ t2 E[ Kd]{u }n+[M ](2 {p}n−{p}n−1)

[M ]
(23)

where the matrices [D] and [Kd] represent the non-linearity of the equation, that is, they depend on the induced
velocity u calculated through eq. (22).

4 Results and Discussion

Case 1: Homogeneous medium: Linear and Non-Linear Solution

The case corresponds to a homogeneous aqueous medium with constant density ρ (1000 Kg/m3) and speed
of sound c (1500 m/s). The linear solution for pressure and velocity is obtained by setting the matrices [Md], [D]
and [Kd] equal to zero. The domain of 15000 m in length is represented by 1500 second-order elements. The
time interval is 10-3 s., which satisfies the stability criterion of Oden & Fost [14]. The sinusoidal source, placed in
the center of the domain, has a frequency of 1 Hz. ABC boundary conditions were used at the borders. The
simulation time was 600s (Figure 1), both for the linear and non-linear models.

Figure 1. Linear pressure magnitude and induced velocity in Homogeneous Medium

After the simulation time of 17 sec., the pressure amplitude of the linear model reached a constant value of
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0.999902 Pa. The velocity magnitude reached a constant value of 7.74464x10 -7m/s after the simulation time of
11 sec. The nonlinear model produced the same results for pressure and velocity. Regarding the results of the
linear  model,  no  significant  difference  was  found  between  pressures  and  velocities,  perhaps  because  the
magnitude of the velocity is very small (~1μm/s). Table 1 presents the results of this first case.

Table 1. Results of pressure and velocity magnitude of linear and non-linear models for a homogeneous medium

Linear Pressure Fluid Velocity Non-Linear Pressure Fluid Velocity

10s 1.001244Pa 7.74466x10-7m/s 10s 1.001244Pa 7.74466x10-7m/s 
11s 1.001159Pa 7.74464x10-7m/s 11s 1.001159Pa 7.74464x10-7m/s
17s 0.999902Pa 7.74464x10-7m/s 17s 0.999902Pa 7.74464x10-7m/s 
600s 0.999902Pa 7.74464x10-7m/s 600s 0.999902Pa 7.74459x10-7m/s 

Case 2: Heterogeneous medium: Linear and Non-Linear Solution

For heterogeneous medium, a 15 km domain with 2080 non-uniform second order elements was used. The
source  is  a  Ricker  type  with  a  cut-off  frequency  of  1  Hz.  The domain  was  divided  into  three  layers,  the
specification of each layer is shown in Table 2. At the borders,  the absorbing condition (Air layer) and the
reflective condition (Rock layer) were used. The time interval used was 2x10-4 s.

Table 2. Specifications of the 3 Layers of the Heterogeneous Domain

Air layer (0 to 5km) Water layer (5km to 10km) Rock layer (10km to 15km)

Sound Speed 344m/s 1500m/s 5000m/s

Density 1Kg/m3 1000Kg/m3 2500m/s

At each interface between the layers (5km / 10km) the P-wave is transmitted and reflected. Figure 2 shows
this interaction from 3 s to 7.5 s.

Figure 2. Pressure and velocity magnitude of the linear model for heterogeneous media

During propagation, the interaction of the wave with the change of medium takes place in the form of
reflection. Thus, the energy of the incident wave is divided into one that is carried by the reflected wave and one
that is carried by the transmitted wave. After the reflection of the wave at the boundary of the domain (rock
layer) and back to the water layer, the amplitude of the wave is smaller than the initial amplitude. In the water
layer, the initial amplitude of the wave propagating towards the rock layer (at 3s) was 0.99996Pa, while an
amplitude of 0.71004Pa was recorded on its return (at 7.5s). The speed also varied, going from 6.6677x10 -7m/s
to 4.7345x10-7m/s when returning to the water layer. The wave propagating towards the air layer reached an
amplitude of 1.6268Pa after reflection at the water/air interface (in 7.5s). As can be seen in Table 3, the linear
and non-linear model results are essentially the same.
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Table 3. Pressure magnitude and induced velocity from second case

Linear Pressure Velocity Non-Linear Pressure Velocity

Right Wave - 3s 0.99999Pa 6.6677x10-7m/s Right Wave - 3s 0.99996Pa 6.6652x10-7m/s
Right Wave -  7.5s 0.71004Pa 4.7345x10-7m/s Right Wave -  7.5s 0.70999Pa 4.7348x10-7m/s

Left Wave - 3s 1Pa 6.6666x10-7m/s Left Wave - 3s 1Pa 6.6666x10-7m/s
Left Wave - 7.5s 1.6268Pa 4.7401x10-3m/s Left Wave - 7.5s 1.6251Pa 4.7352x10-3m/s

Case 3: Linear and Non-Linear Solution for high sound pressure level 

For the latter  case,  a  source with a  high sound pressure  level  (SPL) was considered  according  to  the
scenario analyzed numerically and experimentally by Zhou [16]. The objective was to investigate the linear and
non-linear behavior for high pressure sources and compare the numerical results with those of Zhou [16].

In this scenario, a 160 dB acoustic source in mid-air (ρ~1 Kg/m3 and c=344 m/s) was used to generate an
acoustic wave of 1000 Hz. At a distance of half a wavelength from the source (x = 0.17m) a receiver was placed
to analyze the passage of the wave. Considering that  160 dB equals approximately 10000 W/m2,  a pressure
variation around 2600 Pa was used as the amplitude of the pressure source. A 2 m long mesh is used and the
discrete form is represented by 200 second-order elements. The time interval used was 1x10-6s. Due to the use of
an attenuation function of 5 wave periods at the beginning of the simulation, the first 5 ms were disregarded and
only the results of the following 3.5 ms were analyzed.

The velocity results of the linear and non-linear models are in good agreement with those of Zhou [16],
reaching more than 6m/s at pressure peaks of 160dB at a distance of half a wavelength from the source (Figure
3), as reported by Zhou [16] when commenting that “[...] the peak velocity of the particle increases with the SPL,
and when this level reaches 160 dB, the peak velocity of a 2μm particle can exceed 6 m/s ”.

Figure 3. Zhou’s results, linear pressure magnitude and particle velocity from a 160dB pressure source

Table 4. Comparison between linear and non-linear particle velocity and pressure at x=0.17m and t=3.5ms

160dB source Linear Non-Linear

Particle Velocity 6,264 m/s 6.239 m/s

Pressure 2600.81 Pa 2 617.35 Pa

Particle velocities in the linear and non-linear models also showed good agreement with each other, as
shown in Table 4. For a pressure source of 160 dB, a greater difference was noted between the particle velocities
in the linear and non-linear models in compared to the previous cases, indicating that the velocity of the non-
linear model may become more significant as the source intensity increases. However, this difference was still
small (~0.4%), indicating that despite being a relatively intense acoustic source for humans, it can be considered
small for the environment, since the non-linear effects did not act significantly.
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5 Conclusion

The results found by the model are in agreement  with those reported in the literature in experimental
works, on the magnitude of the velocity induced by sound. Taylor [17] reports induced velocities of the order of
10-5m/s for low frequency Acoustic Waves, and Dall'Osto [18] reports induced velocities of the order of 10 -6m/s
recorded during the propagation of a 100ms acoustic pulse in shallow waters, through the superimposition of
four tones of continuous wave, centered in 1025, 2050, 3075 and 3950 Hz. Despite the results of the linear and
non-linear models being very close in the tests carried out in this work, the non-linear model is promising. Case
3 shows that an increase in the pressure source leads to a greater difference between the results of the linear and
non-linear model, whose difference is of the order of 10-2m/s for induced velocity of the order of 100 m/s.
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