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Abstract. The short-term unit commitment problem is considered hard to optimally solve given the combinatorial 

explosion of the operation decisions regarding the generating units involved in the daily operation planning. The 

problem’s complexity further increases when introducing renewable energy sources, e.g., solar and wind, to the 

planning. This paper applies a recently proposed search space reduction method to thermal unit commitment 

systems penetrated by solar and wind power generation. 
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1  Introduction 

The short-term unit commitment can be described as an engineering and computational problem that seeks to 

minimize the operational costs of the generating units over up to 24 hours [1]. The thermal unit commitment (TUC) 

comprises two basic stages: the decisions of units to operate, often referred to as unit commitment (UC); and the 

economic dispatch (ED). The problem’s significant complexity comes from the combinatorial explosion of the 

binary variables representing the ON/OFF operation decisions concerning the thermoelectric units. Furthermore, 

the temporal coupling of the decision variables among different periods of the planning horizon also complicates 

the problem. There are many techniques to plan the operation in a way to meet the operational constraints whilst 

minimizing costs. Among these methods, the following are some that stand out when it comes to solving UC: 

decomposition methods [3], priority lists [4], and evolutionary algorithms [5]. In recent previous work, the authors 

of this paper proposed a method to effectively reduce the search space of TUC problems [7,8]. This paper proposes 

the application of the method from [7,8] to systems penetrated by wind and solar power. 

2  Formulation 

The TUC problem is usually formulated as a minimization problem regarding the operational cost and 

subjected to a set of constraints [9]. The following subsections present the objective function and the constraints 

considered in this paper, which are based on [10]. 

2.1 Operational cost 

The total cost (𝑇𝐶) of operations can be written as the power production cost plus startup and shutdown costs 

concerning each generating unit 𝑖 at each period ℎ of the planning horizon, as in Eq. (1). 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐶 =  ∑ ∑ 𝑎𝑖𝑢𝑖ℎ
+

𝑁𝐺

𝑖=1

𝑏𝑖𝑃𝑖ℎ
+ 𝑐𝑖𝑃𝑖ℎ

2 + 𝑠𝑖ℎ

𝑐𝑜𝑙𝑑 ⋅ 𝑠𝑖𝑐𝑜𝑠𝑡

𝑐𝑜𝑙𝑑 + 𝑠𝑖ℎ

ℎ𝑜𝑡 ⋅ 𝑠𝑖𝑐𝑜𝑠𝑡

ℎ𝑜𝑡

𝐻

ℎ=1

 (1) 
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Where: 𝐻 is the total number of periods in the planning horizon; 𝑁𝐺 is the total number of thermal units; 

𝑎𝑖 , 𝑏𝑖 and 𝑐𝑖 are the fuel cost coefficients of unit 𝑖; 𝑢𝑖ℎ
is the binary variable related to the operation decision of unit 

𝑖 at period ℎ (𝑢𝑖ℎ
= 1 → 𝑂𝑁, 𝑢𝑖ℎ

= 0 → 𝑂𝐹𝐹); 𝑃𝑖ℎ
 is the power generated by thermal unit 𝑖 at period ℎ; 𝑠𝑖ℎ

𝑐𝑜𝑙𝑑 is 

the binary decision representing a cold startup; 𝑠𝑖𝑐𝑜𝑠𝑡

𝑐𝑜𝑙𝑑  is the cost of a cold startup; 𝑠𝑖ℎ

ℎ𝑜𝑡  is the binary decision 

representing a hot startup; 𝑠𝑖𝑐𝑜𝑠𝑡

ℎ𝑜𝑡  is the cost of a hot startup. 

2.2 Cold or hot startup 

Whether a startup will be cold or hot depends on how much time has passed since the unit has been shut 

down, as modeled by Eqs. (2) and (3). 

𝑠𝑖ℎ

𝑐𝑜𝑙𝑑 + 𝑠𝑖ℎ

ℎ𝑜𝑡 = 𝑥𝑖ℎ
, ∀ℎ ∈ 𝐻, ∀𝑖 ∈ 𝑁𝐺 (2) 

𝑢𝑖ℎ
− ∑ 𝑢𝑖𝑤

ℎ−1

𝑤=ℎ−𝑡𝑐𝑠𝑢𝑖
−𝑀𝐷𝑇𝑖−1

= 𝑠𝑖ℎ

𝑐𝑜𝑙𝑑 , ∀ℎ ∈ 𝐻, ∀𝑖 ∈ 𝑁𝐺 (3) 

 

Where: 𝑥𝑖ℎ
 is an auxiliary binary variable that is only equal to 1 when the unit is turned from OFF to ON at 

period ℎ; 𝑤 is an auxiliary index required for calculations; 𝑀𝐷𝑇𝑖  is the minimum down time of unit 𝑖; 𝑡𝑐𝑠𝑢𝑖
 is the 

number of periods, after 𝑀𝐷𝑇𝑖 , that should pass for the startup to be cold. 

2.3 Minimum up and down times 

Once a unit is activated/deactivated, it must remain ON/OFF for a specific number of periods before it can 

be turned OFF/ON. Equations (4) and (5) represent this behavior. 

∑ 𝑥𝑖𝑤

ℎ

𝑤=ℎ−𝑀𝑈𝑇𝑖+1

≤ 𝑢𝑖ℎ
, ∀ℎ ∈ 𝐻, ∀𝑖 ∈ 𝑁𝐺 (4) 

∑ 𝑦𝑖𝑤

ℎ

𝑤=ℎ−𝑀𝐷𝑇𝑖+1

≤ 1 − 𝑢𝑖ℎ
, ∀ℎ ∈ 𝐻, ∀𝑖 ∈ 𝑁𝐺 (5) 

 

Where: 𝑦𝑖ℎ
 is an auxiliary binary variable that is only equal to 1 when the unit is turned from ON to OFF at 

period ℎ; 𝑀𝑈𝑇𝑖  is the minimum up time of unit 𝑖. 

2.4 Startups, shutdowns, and operation decisions  

Equations (6) and (7) establish the interactions among the 𝑥𝑖ℎ
, 𝑦𝑖ℎ

, and 𝑢𝑖ℎ
 variables. 

𝑢𝑖ℎ
− 𝑢𝑖ℎ−1

= 𝑥𝑖ℎ
− 𝑦𝑖ℎ

, ∀ℎ ∈ 𝐻, ∀𝑖 ∈ 𝑁𝐺 (6) 

𝑥𝑖ℎ
+ 𝑦𝑖ℎ

≤ 1, ∀ℎ ∈ 𝐻, ∀𝑖 ∈ 𝑁𝐺 (7) 

2.5 Load balance and spinning reserve 

For all periods of the planning horizon, the load must be met. In addition, a power reserve must be in place 

for emergencies, such as the failure of a generator. Equations (8) and (9) represent these constraints, respectively. 

𝑆ℎ + 𝑊ℎ + ∑ 𝑃𝑖ℎ

𝑁𝐺

𝑖=1

= 𝐿ℎ, ∀ℎ ∈ 𝐻 (8) 

𝑆ℎ + 𝑊ℎ + ∑ 𝑢𝑖ℎ
�̅�𝑖

𝑁𝐺

𝑖=1

≥ 𝐿ℎ + 𝑆𝑅ℎ, ∀ℎ ∈ 𝐻 (9) 
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Where: 𝑆ℎ and 𝑊ℎ represent the solar and wind power generation, respectively, at period ℎ; 𝐿ℎ is the load at 

period ℎ; 𝑆𝑅ℎ is the spinning reserve required at period ℎ; �̅�𝑖 is the maximum power that unit 𝑖 can generate. 

As a remark, it is emphasized that the cases with renewable energy penetration consider the solar and wind 

power supply as being at nominal values. In addition, no operational cost is considered for these sources [11]. 

2.6 Maximum and minimum operation limits  

Equation (10) models the minimum (𝑃 𝑖) and maximum power a unit can generate according to its operational 

state, i.e., ON or OFF. 

𝑢𝑖ℎ
𝑃 𝑖 ≤ 𝑃𝑖ℎ

≤ 𝑢𝑖ℎ
�̅�𝑖 , ∀ℎ ∈ 𝐻, ∀𝑖 ∈ 𝑁𝐺 (10) 

3  Relevance matrix 

The methodology utilized in this paper was developed by this paper’s authors and applied to purely 

thermoelectric systems in [7]. The relevance matrix (RM) indicates how important each generating unit is in each 

period of the planning horizon. The construction of RM bases itself on priority lists algorithms, which aim at 

activating generating units until the demand constraints are met. The hybrid priority lists (HPLs) forming RM 

come from hourly permutations regarding a set of pre-constructed priority lists. These lists are generated according 

to literature-consolidated indices that carry technical information of the generating units. In this paper, the utilized 

indices are the full load average production cost (FLAC) [12], production marginal cost (PMC) [13], and Lagrange 

sensitivity (LS) [14]. The indices permutation seeks to enable RM to capture as much information from the 

generating units as possible, which will impact the searching mechanism of the method. Readers interested in 

understanding the details of the methodology are encouraged to consult [7]. 

3.1 Flowchart of the methodology 

Figure 1 presents a flowchart of the proposed method considering solar and wind generation. The method 

begins by defining the maximum number (𝑖𝑚𝑎𝑥) of decision matrices (DM) that will form RM. It happens that 

𝑖𝑚𝑎𝑥  is also the number of HPLs created according to permutations of the FLAC, PLC e LS lists. Each DM has a 

size of 𝐻 x 𝑁𝐺, which represent the number of periods in the planning horizon and the number of generating units, 

respectively. The process guarantees that a DM will indicate units to be ON or OFF in a way that the demand 

constraints from Eqs. (3) and (4) are attended. MDT and MUT requirements are met by activating units following 

the list. This approach avoids compromising constraints that are already satisfied. Upon attending all constraints 

and reaching 𝑖𝑚𝑎𝑥 , RM is given by the sum of all DMs obtained during the iterative procedure. 

 

 

Figure 1. Flowchart of the method 
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3.2 Relevance matrix indicators 

The methodology from Section 3.1 results in a matrix that relates to 𝑖𝑚𝑎𝑥  different priority lists. To 

demonstrate the relevance indicators, a simple theorical case is presented ahead. In this case, 𝑖𝑚𝑎𝑥  was taken as 

equal to 100. The system has 4 generating units to be planned over 4 hours. Figure 2 shows the resulting RM with 

the relevance indicators. 

 

Figure 2. RM example 

In Fig. 2, each value corresponds to the number of DMs in which a generating unit was set as ON during a 

period of the planning horizon. Thus, RM indicates the relevance of each unit at each period according to the 

HPLs. The relevance levels were classified as α, β and γ. They are described as follows: 

•  𝛼: indications of high relevance. The unit was ON at the given period for all DMs. This is an 

indication that such an occurrence is significantly important to attend the constraints. 

• 𝛽: indications of low relevance. The unit was ON at the given period for 10% or less of the DMs. 

Such an occurrence has low importance when it comes to attending the constraints. The value of 

10% was chosen empirically after many tests. 

• 𝛾: indications of no relevance. The unit was OFF at the given period for all DMs. This is an 

indication that such an occurrence is not important to attend the constraints. 

The utilization of the described indicators aims at reducing the number of binary variables in TUC problems, 

hence also reducing the search space. Such reduction addresses part of the UC subproblem according to Eq. (11). 

𝑢𝑖ℎ
= {

 1, ∀ 𝛼 𝑢𝑛𝑖𝑡𝑠            
 0, ∀ 𝛽 𝑎𝑛𝑑 𝛾 𝑢𝑛𝑖𝑡𝑠

 (11) 

 

By applying Eq. (11), the developed method can decrease the search space of the daily-planned TUC 

problem, thus attenuating the combinatorial explosion of possible solutions. 

4  Case studies 

The approach brought in this paper benefits from the reduction scheme previously presented. After the 

preliminary decision of part of the binary variables based on RM, the remaining binary variables plus the dispatch 

calculations are solved by a Julia implementation of MOSEK [15]. Three case studies will be presented. The first 

regards TUC only, i.e., without renewable penetration. The second and third are penetrated by solar and wind 

generation, respectively, and will be referred to as S-TUC and W-TUC. For all studies, five different applications 

of the relevance indicators are analyzed: RI-0, no search space reduction; RI-1, only 𝛼 occurrences are fixed; RI-

2, only 𝛽 occurrences are fixed; RI-3, only 𝛾 occurrences are fixed; RI-4, 𝛼 and 𝛾 occurrences are fixed. 

The thermal system under analysis is given by the 10 units system from [16]. All required data, such as 

technical information of the generating units, hourly demands, and power output from renewable sources, are 

found in [16]. For all studies, 𝑖𝑚𝑎𝑥 is equal to 1000. Figure 3 presents the RM for the three cases. Case 1 comprises 

thermal units only. Cases 2 and 3 add solar and wind systems, respectively.  
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Figure 3. Relevance matrices for TUC (Case study 1), S-TUC (Case study 2) and W-TUC (Case study 3) 

Table 1 provides results obtained by MOSEK given the fixed binary decisions. The table presents the total 

operational cost (TC), number of branches explored by the optimizer, computational time (T) to achieve the 

solution, and percentage reduction (PR) regarding the total number of binary operation decision variables. It is 

emphasized that this analysis concerns the 𝑢𝑖ℎ
 binary variables only. In other words, the other binary variables are 

not directly affected by the method. 
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Table 1. Results for each case of relevance indicators 

 RI case TC ($) Branches T (s) PR (%) 

TUC 

Case study 1 

RI-0 563937.7 5843 72.45 0% 

RI-1 563937.7 1277 11.8 44.17% 

RI-2 563937.7 944 6.49 22.08% 

RI-3 563937.7 36 0.58 32.5% 

RI-4 563937.7 23 0.58 76.67% 

S-TUC 

Case study 2 

RI-0 549138.6 27051 297.13 0% 

RI-1 549138.6 1455 15.95 40.83% 

RI-2 549138.6 2933 22.28 22.92% 

RI-3 549138.6 109 1.19 35.83% 

RI-4 549138.6 27 0.33 76.67% 

W-TUC 

Case study 3 

RI-0 481335.6 2529 47.16 0% 

RI-1 481335.6 1354 19.25 32.5% 

RI-2 481335.6 291 3.88 31.25% 

RI-3 482133.7 61 0.72 42.9% 

RI-4 482554.6 145 0.83 75.4% 

 

Case study 1: Neither solar nor wind penetration was considered. The method reduced the computational 

time from 72.45s to 0.58s. The operational cost remained the same, meaning that the approach reduced the search 

space in a way that did not compromise the optimal decisions. The method significantly reduced the number of 

branches explored until convergence, which affects the computational time needed to achieve the final solution. 

Case study 2: By comparting the RMs in Fig. 3, one can notice the relevance reduction for some occurrences 

when solar power contributes to meet the constraints. For instance, unit 10 at hour 12 went from being highly 

relevant (𝛼) to being a variable to be decided by MOSEK. Such a fact is due to the solar power added to the thermal 

generation, which decreased the need for thermal power. The method enabled the optimizer to converge in 0.33s, 

which is a significant decrease compared to the 297.13s required by the non-reduced case. 

Case study 3: wind power penetrates the system by means of two wind turbines. It is noteworthy that the 

total renewable power is greater than the one in the solar case. Thus, some occurrences became even less relevant, 

as seen in Fig. 3. For instance, unit 10 at hour 12 now has low relevance (𝛽) and will be fixed by RM, depending 

on the RI case. In this study, the operational cost further decreased, which is also a consequence of the increased 

renewable penetration. More precisely, TC is 14.65% lower than the cost from case study 1. Table 1 shows that 

the RI-2 case achieved the same solution from the non-reduced case, though around 12 times faster. TC is even 

lower for RI-3 and RI-4. However, these reduction cases compromised the solution quality compared to RI-0. 

The best solutions for the 3 presented case studies were compared to other papers from the literature. Table 

2 provides such results and demonstrates the applicability and effectiveness of the search space reduction technique 

presented in this paper. 

Table 2. Operational costs ($) comparison among the presented method and other works 

Method TUC  S-TUC W-TUC 

IPL [16] 563985.0 549348.6 485401.5 

HHO-IGWO [17] 563937.7 559642.1 522814.4 

QI-ADP[18] 563977.0 - 511192.0 

RM + MOSEK (Proposed) 563937.7 549138.6 481335.6 

5  Conclusions 

This paper applied a search space reduction technique to TUC problems considering renewable energy 

penetration. The obtained results demonstrate the operation cost reduction when solar or wind power are 

considered. The developed method enabled much faster convergence for all case studies while preserving solutions 

quality, as shown by the comparison to other works from the specialized literature. 
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