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Abstract. Collaborative Simultaneous Localization and Mapping (C-SLAM) is an active research area in robotics
that aims to enable the collaboration of multiple robots in constructing a shared map and simultaneously estimat-
ing their positions. However, Map fusion poses a significant challenge, especially when involving a large group
of robots. It aims at obtaining an accurate global representation of the environment. This paper proposes an novel
approach using the Fourier Transform, the Pearson correlation coefficient and Particle Swam Optimization to ad-
dress the map fusion problem. Efficiently merging maps into a global representation requires careful consideration
of spatial relationships and alignment of these maps. The Fourier Transform analyzes spectral features in each
robot’s measurements, extracting insights about spatial distribution. The Pearson correlation coefficient evaluates
spectral similarity between different map sections, facilitating region pairing for successful fusion. The search for
optimal fusion parameters is performed using the Particle Swarm Optimization Algorithm. These distinct regions
guide the fusion process, optimizing global map creation. Instead of a complete map fusion, selective fusion of
sections increases the likelihood of success. Experiments involving five robots in a simulated environment val-
idate the proposed approach, demonstrating the capability of optimized map fusion to provide a more accurate
and comprehensive representation of the environment. This enhancement should contribute to refine further the
C-SLAM.

Keywords: C-SLAM, Map fusion, Fourier Transform, Pearson Correlation, Multi-robots

1 Introduction

Collaborative Simultaneous Localization and Mapping (C-SLAM) emerges as a prominent research area in
contemporary robotics, aiming to enable cooperation among multiple robots in constructing shared maps and
simultaneously estimating their positions, Dörr et al. [1], Saeedi et al. [2]. Within this context, the fusion of
individual maps to create a precise global representation of the environment stands out as a crucial challenge. This
fusion not only facilitates collaboration among robots but also offers substantial advantages in scenarios involving
complex operations and dynamic environments.

The foundational premise of C-SLAM rests on data and resource sharing, with the central goal of effectively
constructing a comprehensive map of the environment. In environments challenging for a single robot to explore,
such as industrial complexes, the applicability of C-SLAM becomes pertinent, simplifying mapping processes in
demanding contexts.

The fusion of maps, an essential component of C-SLAM, involves integrating individual maps generated by
each robot into a cohesive global map, Ma et al. [3]. This procedure is indispensable to promote a meaningful
collaboration between the robots operating jointly in a shared space, as observed in search and rescue operations or
complex industrial settings. However, the task of map fusion encounters technical hurdles. The initiation process
of C-SLAM often takes place without well-defined initial references, resulting in maps that, while seemingly
coherent, may exhibit translation and rotation variations due to undefined references. Furthermore, many real-
world environments feature repetitive structures, which can introduce additional challenges to map fusion, leading
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to misalignments and ambiguities.
This paper proposes an innovative approach as a response to these challenges. The use of the Discrete Fourier

Transform assumes a fundamental role, enabling spectral analysis of measurements obtained by the robots. This
analysis provides an in-depth understanding of the mapped environment, addressing issues such as misalignments
and local minima that impact the accuracy of map fusion. At the heart of this contribution is overcoming funda-
mental obstacles in map fusion, with direct implications for the effectiveness of robotic collaboration and obtaining
reliable and accurate global maps. This approach not only offers a technical solution but also outlines a path for
future investigations and practical applications. In essence, this research presents a noteworthy advancement in the
field of C-SLAM, carrying significant implications both within the realm of robotics and beyond.

The structure of this paper comprises five sections. Initially, in Section 2, we survey main recent works in the
domain of map fusion. Subsequently, in Section 3, we elaborate on the proposed method for map fusion. Following
that, in Section 4, we showcase the implementation results. Finally, in Section 5, we draw conclusions and outline
avenues for future research.

2 Relates Works

In Marjovi et al. [4], the innovative concept of robotic clusters is introduced to enhance the resolution of
complex problems. This concept proposes the formation of a robotic cluster, consisting of a individual robots
group capable of sharing their processing resources. This allows robots to tackle challenging tasks by sharing
their processing units. The paper explores the concept, requirements, characteristics, and architecture of robotic
clusters in detail. Furthermore, the problem of ’topological map fusion’ is addressed as a case study to illustrate
the implementation and evaluate the functionality of the presented idea. The research also presents a novel parallel
algorithm developed to address this specific problem. Experimental results validated that robotic clusters signif-
icantly accelerate computations in multi-robot systems. This proposed mechanism has potential applications in
various areas of robotics and has the power to enhance the performance of multi-robot systems, especially when
solving problems that require substantial processing resources.

In Hörner [5], a new algorithm for fusion 2D maps created by different robots without knowledge of initial
relative positions is presented. The algorithm is inspired by computer vision techniques for creating panoramas
from individual photos. The presented algorithm uses data represented by grid occupancy maps, allowing good
scalability for heterogeneous swarms of multiple robots and enabling the use of the algorithm with different SLAM
algorithms. The map fusion algorithm is implemented as a publicly available ROS package and is accepted for
distribution by ROS. The algorithm’s performance is tested in the ROS environment using the VREP simulator.
For evaluation purposes, a ROS package is developed for autonomous exploration of environments in this work.

In Carpin [6], an innovative algorithm for fusing maps generated by multiple robots exploring the same envi-
ronment is proposed. This algorithm generates a set of candidate transformations necessary for the fusion of two
maps, comprising translations and rotations. Each transformation is weighted, allowing the distinction of uncertain
situations and enabling the tracking of various scenarios in the face of ambiguities. The transformations are de-
rived from the spectral analysis of information present in the maps. This approach stands out for its deterministic,
non-iterative nature, and computational efficiency. The conducted experiments cover publicly accessible datasets,
as well as maps produced by two robots exploring both indoor and outdoor environments. Through experimental
validation, it is demonstrated that the proposed technique consistently achieves map fusion with notably distinct
characteristics.

3 Proposed Method for Map Fusion

Map fusion is the process of combining information from different maps to create a unified and more com-
prehensive representation of an environment. In the context of Simultaneous Localization and Mapping (SLAM)
solutions for multiple robots, map fusion is employed to merge the individual maps created by each robot into a
single global map.

Map fusion enables the integration of information from multiple robots to create an accurate global represen-
tation of the environment. In applications involving multiple robots, map fusion aims to overcome the challenge
of synchronizing individual maps, each constructed from an unknown initial reference. This results in maps with
similar topological structures but different translations and rotations. The optimized fusion process occurs in steps,
as illustrated in the flowchart presented in Fig. 1.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023



Luigi Maciel Ribeiro, Nadia Nedjah, Paulo Victor R. Carvalho

Figure 1. Proposed map fusion process steps

3.1 Construction of Individual Maps

A map is a matrix M with r rows and c columns, where M(i, j) represents the state of the cell. Each cell can
take one of three values: “free”, “occupied”, or “unknown”. These values encode the environment’s state in the
corresponding cell and they are essential for creating an understanding of the surroundings.

The process of map generation involves collecting data from the robot’s sensors, such as laser range sensors,
depth cameras, or LiDAR. These sensors provide information about the distance and geometry of obstacles in the
environment. By processing this data, the robot identifies obstacles and their positions, which are then integrated
into the map representation. Contemporary SLAM algorithms utilize occupancy beliefs for each cell, which are
converted to the “occupied” state in the grid map. As a result, the generated map becomes a discrete representation
of the environment’s features and obstacles.

3.2 Localization of Unique Pose

To identify unique regions, we use spectral analysis based on the Discrete Fourier Transform (DFT), as
presented by Brigham [7]. Discrete Fourier Transform (DFT) aids in identifying distinct spectral features, enabling
the detection of unique poses. This involves calculating the overall map’s spectrum and comparing it with the
spectra of pose sections.

DFT is a fundamental tool in signal and time series analysis, playing a crucial role in extracting frequency
domain information from time domain data. The equation defining DFT is given as eq. (1):

DFT (u) =

N−1∑
x=0

f(x)e−i2πux/N , (1)

where, DFT (u) represents the magnitude of the transform for frequency u, N denotes the total number of points
in the time series, and f(x) is the sample value at time instant x. The complex exponential e−i2πux/N introduces
the frequency component, where i is the imaginary unit and 2π is a constant amplifying the angular change. The
variable u controls the frequency of interest in spectral analysis, while x iterates through the time series samples.

In this step, unique poses present in each map are identified. To achieve this crucial goal of our approach,
we apply a spectral analysis algorithm based on the DFT, as outlined in algorithm 1. Accurate detection of unique
poses is of paramount importance as it significantly enhances the probability of successful map fusion. When
examining the map constructed in the simulation, the presence of several similar structures becomes evident.
This leads to a substantial impact of repetitive structures on spectral behavior when calculating the overall map’s
spectrum, considering all ξ poses. Therefore, to identify unique poses, which are those located in regions with
atypical features. We divide the analysis into sections containing σ poses each. Then we calculate the spectrum
of each section to determine the divergence from the overall spectrum. This is crucial, as the strong influence of
typical and repetitive regions on the overall spectrum causes unique poses, with their distinct structures, to exhibit
significant divergence from the average spectrum in the analysis sections. This spectral behavior in regions with
unique poses stands out clearly in comparison to the overall spectrum.
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Algorithm 1 Unique Pose Localization

1: Calculate the overall spectrum: o spec = |dft(lidar r)| ▷ eq. (1)
2: Initialize parameters: sub sec← 5, u sec← [], pose d← [], L D ← []
3: for i in range from sub sec to number poses− sub sec do
4: s spec← |dft(lidar r[i− sub sec : i+ sub sec, :])|
5: for spec in s spec do
6: dif ←

∑
|spec− o spec|, axis=1

7: L D.append(dif)
8: end for
9: pose d.append(L D)

10: end for
11: ▷ Identify unique poses based on discrepancies, where the threshold is adjusted to ensure identification of a

standardized number of poses.
12: for i, pose in enumerate(pose d) do
13: has unique← False
14: for dif in pose do
15: if

∑
(dif < δ) ≤ 1 then

16: has unique← True
17: break
18: end if
19: end for
20: if has unique then
21: u sec.append(i)
22: end if
23: end for
24: return u sec

3.3 Identification of Best Pair of Maps

Spectral similarity between different sections of unique poses is evaluated using the Pearson Correlation
Coefficient, as introduced by Cohen et al. [8]. The pair of maps with the highest number of poses exhibiting
high similarity is chosen as the selected pair in this stage of the process for map fusion. The Pearson Correlation
Coefficient, denoted as ρxy , is a statistical measure assessing the linear relationship between two variables x and
y. In this formula, presented in eq. (2):

ρxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
, (2)

where, n denotes the total number of observations in the sample. The variables xi and yi represent individual
values of observations i in x and y, respectively. The means x̄ and ȳ denote the arithmetic means of observations
in variables x and y, respectively. The calculation of the Pearson Correlation Coefficient involves summing the
products of differences between individual observations and their respective means, normalized by the product
of square roots of the sums of squares of differences between observations and their respective means in both
variables.

After identifying unique poses, it becomes possible to determine the ideal pairs as well as the sequence of
map fusion. By examining the similarity of unique poses among all robots, we can identify pairs that exhibit higher
degree of agreement, with the corresponding ρ being higher than a predefined threshold θ. Focusing specifically
on unique regions, this process of similarity analysis becomes particularly valid, as, at this stage, common regions
present in maps from all robots will not interfere with the similarity assessment outcomes.

3.4 Find the Best Fit

The search for the optimal fusion parameters is conducted through the Particle Swarm Optimization (PSO)
Algorithm proposed by Kennedy and Eberhart [9]. In this optimization process, the objective function plays a
crucial role in guiding the search towards the ideal solution. The adopted objective function is the mean squared
error between the masks generated from unique poses, as defined in eq. (3):
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1

n

n∑
i=1

(ŷi − yi)
2, (3)

where, n represents the total number of data points used in comparing the masks, ŷi is the predicted (or estimated)
value of the mask at position i, and yi is the actual or observed value of the mask at position i. This equation
calculates the average of the squared differences between the predicted values ŷi and the actual values yi for
all data points, providing a quantitative measure of deviation between masks generated from unique poses. The
smaller the value resulting from eq. (3), the closer the masks are, indicating a more accurate alignment between
the maps.

The Particle Swarm Optimization (PSO) is employed to optimize the determination of required horizontal
translation ∆x, the required vertical translation ∆y and the required angle ∆ϕ for rotation that lead to a more
precise map fusion. PSO simulates the behavior of a swarm of particles, where each particle represents a candidate
solution in the search space. Through iterations and exploration of solution space, particles collaborate to find
parameters that minimize the objective function, enabling convergence towards an optimal fusion alignment.

3.5 Translation and Rotation

With the located parameters, map fusion is performed by applying a translational and rotational transforma-
tion based on the parameters identified by PSO, and the process is repeated until all maps are aligned in a common
frame of reference. To perform a translation followed by a rotation, we first apply the translation and then the
rotation. Thus, to translate and rotate the points of the masks, we use the following eq. (4):

x′ = (x+∆x) · cos(∆ϕ)− (y +∆y) · sin(∆ϕ)

y′ = (x+∆x) · sin(∆ϕ) + (y +∆y) · cos(∆ϕ),
(4)

where, x′ and y′ represent the coordinates of the point after the application of both translation and rotation.

3.6 Maps Fusion

To formally define the problem of map fusion, we consider a set of N individual maps denoted as M1,M2, . . . ,MN ,
each associated with a corresponding robot. Each map Mi is represented as a set of features Fi extracted from
robot measurements. The goal of map fusion is to generate a fused global map Mglobal that accurately encapsulates
the combined information from all individual maps.

Let M1 and M2 be two maps represented as matrices of dimensions r × c, where r is the number of rows and
c is the number of columns. Each cell M1(i, j) and M2(i, j) represents the state of the pixel at row i and column
j of maps M1 and M2, respectively. The pixel state in a map can be one of the following: “free”, “occupied”, or
“unknown”. Map fusion, denoted as Mfusion, is obtained by considering the following rules:

Mfusion(i, j) =


“unknown”, if M1(i, j) = “unknown” and M2(i, j) = “unknown”
“occupied”, if M1(i, j) = “occupied” or M2(i, j) = “occupied”
“free”, otherwise

where 1 ≤ i ≤ r and 1 ≤ j ≤ c.

4 Results

In order to simulate the process of cooperative local mapping involving multiple robots to generate the re-
quired datasets, a simulated environment is created. This environment consists of an occupancy grid map, as
depicted in Fig. 2. During the navigation stage, each robot records its current pose and LIDAR readings, resulting
in the construction of a dataset containing 5000 poses. Using these datasets, it becomes possible to generate oc-
cupancy grid maps for each robot, as illustrated in Fig. 3. Once the parameters are successfully located, we apply
translation and rotation transformations to the M2. The outcome of this process is showcased in Fig. 4.
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Figure 2. Grid map used in simulation

(a) Map by Robot 1 (b) Map by Robot 2 (c) Map by Robot 3 (d) Map by Robot 4 (e) Map by Robot 5

Figure 3. Maps constructed by robots during the SLAM process

(a) Before alignment (b) After alignment

Figure 4. Map fusion of M1 and M2

We employ four metrics to evaluate the maps generated through each fusion process. The completeness is
calculated as the ratio of the total number of mapped pixels to the number of pixels in the reference map. The
accuracy is determined by the ratio of the total number of pixels accurately mapped to the total number of pixels
in the reference map. The precision is gauged by the ratio of correctly mapped black (occupied) pixels to the total
number of black pixels mapped. Lastly, the efficiency is derived as the product of completeness and precision. The
results are presented in Table 1.

Table 1. Fusion results of the 5 maps

Maps Completeness Accuracy Precision Efficiency

M1 79.55 68.77 58.60 46.51

M1,2 88.94 77.82 60.94 54.06

M1,2,3 89.97 78.96 61.59 55.54

M1,2,3,4 96.87 85.57 63.85 62.29

M1,2,3,4,5 96.91 86.41 68.70 66.67

The results demonstrate a consistent improvement across all evaluated parameters, leading to an overall en-
hanced performance. The graphical representations of the outcomes and the final map resulting from the fusion
of the five maps are depicted in Fig. 5. Although a completeness of 100% is not achieved, the outcome came re-
markably close to this value. Due to the lack of control or constraints on robot movements, many easily accessible
areas were mapped multiple times by the same robot and by different robots. The incorporation of motion control
techniques is a prospect that could potentially yield even greater gains.
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(a) Line chart showing the results (b) Final map

Figure 5. Performance results obtained by the fusion of the 5 maps

5 Conclusions

In this paper, we have presented an innovative approach that utilizes Fourier Transform, the Pearson cor-
relation coefficient and the Particle Swam Optimization for map fusion. By analyzing spectral features in the
measurements of each robot, the Fourier Transform provides valuable insights into spatial distribution, while the
Pearson correlation coefficient evaluates spectral similarity between different map sections and Particle Swam
Optimization optimizes the search for alignment parameters. This approach enables the identification of specific
regions, contributing to the efficient creation of a more accurate global map.

The experiments, conducted in a simulated environment involving five robots, have validated the effectiveness
of the proposed approach. The results demonstrate consistent improvements in terms of completeness, accuracy,
precision, and efficiency for the resulting maps from each fusion process. While we observe that a completeness
of 100% is not achieved, the approach significantly approached this value, highlighting the optimization potential
in map fusion. This work is a significant contribution to advancing research in collaborative mapping applications,
paving the way for improvements in map functionality and C-SLAM research.

We also identify the opportunity to better utilize resources by restricting robot navigation in specific regions of
the environment. As another future work, we intend to consider mapping area limitations for each robot, avoiding
redundancy in exploring easily accessible regions and encouraging coverage of not mapped areas. Additionally,
we envision the application of this approach in chaotic and dynamic environments, enabling the classification of
fixed and dynamic obstacles through the observation of references from different robots.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.
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