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Leonardo Willer de Oliveira1, Ivo Chaves da Silva Júnior1

1Dept. of Energy, Federal University of Juiz de Fora
Minas Gerais, Brazil

gabriel.schreider2016@engenharia.ufjf.br, lucas.nepomuceno@engenharia.ufjf.br,
edimar.joliveira@engenharia.ufjf.br, arthur.paula@engenharia.ufjf.br,
leonardo.willer@ufjf.edu.br, ivo.junior@ufjf.br

Abstract.
This work proposes a novel hybrid optimization approach combining nonlinear programming and the Manta

Ray Foraging Optimization (MRFO) metaheuristic to optimize the controller parameters of the hydro-wind inter-
connected power system to improve the Load Frequency Control (LFC). The optimization process addresses chal-
lenges posed by integrating wind power into power grids due to its limited inertia, which hampers natural inertial
response. The research focuses on incorporating wind generation into Load Frequency Control (LFC) utilizing the
Virtual Synchronous Generator (VSG) technique and operational adjustments. In this way, this work contributes
to improving LFC efficiency in mixed power generation setups by introducing a hybrid method that surpasses the
limitations of traditional controllers, enhancing the equilibrium between power generation and demand.

Keywords: Manta Ray Foraging Optimization, nonlinear programming, Load Frequency Control, Wind genera-
tion, Hydro generation

1 Introduction

The rapid global growth of wind generation is evident, with installed capacity reaching 828.4 GW in 2021
from 220 GW in 2011, signifying a remarkable 376.55% increase in a decade [1]. Brazil experienced wind capacity
growth by 1227.56%, from 2057 MW in April 2013 to 25251 MW in April 2023, positioning wind power as the
second-largest source at 13.7% compared to hydroelectric generation’s dominant 59.3% [2]. This prompts the need
for enhanced studies to address operational challenges in hydro-wind power systems.

The integration of wind turbines impacts system inertia due to their disconnection from grid frequency. Con-
sequently, they cannot offer inertial response during grid disturbances, potentially leading to frequency instability.
Additionally, wind turbines’ Maximum Power Point operation lacks reserve capacity, hindering their inclusion
in Load Frequency Control [3]. Hydraulic turbines face the inverse response problem, further complicating the
intricate task of designing effective Load Frequency Control for hydro-wind systems [4, 5].

In [3], the authors propose the incorporation of virtual inertia from wind generation into the LFC and the
damping of oscillations in interconnection lines in hydro-wind power systems. The optimization approach pro-
posed involves tuning both hydro and VSG (Virtual Synchronous Generator) controllers and is based on the time-
response domain. The optimization problem is solved using the MATLAB optimization package based on the
interior point method called fmincon [6].

Metaheuristic optimization leverages nature-inspired intelligent behaviors to tackle intricate challenges and
enhance traditional optimization methods. By deftly balancing exploration and exploitation through stochastic
operators spanning the search space, metaheuristics navigate complex problems efficiently, albeit at the risk of
slower convergence when prioritizing exploration. A example is the Manta Ray Foraging Optimization (MRFO)
algorithm, inspired by manta rays’ astute foraging behaviors. This swarm-based approach incorporates three dis-
tinct foraging strategies—chain, cyclone, and somersault—mirroring manta rays’ search patterns and offering a
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robust framework for diverse optimization tasks, marking a significant advancement in optimization methodolo-
gies [7, 8].

Recent research has focused on exploring the applicability of the MRFO algorithm, particularly in power
system optimization. One instance is the MRFO algorithm introduced in [9], which employs mathematical spi-
ral foraging strategies to solve Economic Load Dispatch (ELD) problems with transmission losses. By utilizing
various mathematical spirals, the algorithm enhances global search capabilities and convergence rates, demon-
strating superiority over benchmark functions. A similar approach is seen in [10], where the MRFO algorithm
optimizes Support Vector Regression (SVR) for short-term electrical load forecasting, achieving high precision in
real data experiments. In [11], the MRFO algorithm is applied to Load Frequency Control (LFC) in interconnected
power systems, showcasing its efficacy in optimizing proportional-integral-derivative (PID) controllers, supported
by simulations with real-site data. Additionally, [12] presents the Multi-Strategy Improved Adaptive Manta Ray
Foraging Optimization (MSAMRFO) algorithm for computing renewable energy hosting capacity in distribution
networks, outperforming the original MRFO algorithm in terms of convergence speed and stability. This paper
proposes a hybrid method that combines nonlinear programming with the MRFO algorithm to optimize Load Fre-
quency Control (LFC) parameters in complex power systems, providing a promising avenue for surpassing the
limitations of traditional control techniques and nonlinear optimization.

Under this background, this work introduces a hybrid method merging nonlinear programming and the Manta
Ray Foraging Optimization (MRFO) metaheuristic to optimize Load Frequency Control (LFC) parameters in a
two-area hydro-wind power system. LFC’s significance lies in synchronizing power generation and demand while
minimizing losses. Existing control techniques like adaptive controllers and sliding mode control (SMC) are effec-
tive but burdened by complexity, expertise-dependent parameter tuning, and elevated costs. Traditional controllers
are simpler but struggle with non-linearities and sensitivity to parameter changes. The proposed metaheuristics risk
local minima traps and complex tuning. The hybrid methodology presented offers a promising solution for LFC
optimization in complex power systems. This hybridization technique enables an efficient search for solutions that
surpass the inherent limitations of nonlinear optimization, thereby leading to the discovery of enhanced solutions.

2 Methodology

The proposed optimization strategy employs a time-response framework, enabling simultaneous tuning of
all optimization variables. This approach aims to improve both the system’s time response and dynamic damping
in a unified manner. For hydro power plants, the methodology harmonizes the tuning of PID controllers and
Transient Droop Compensators (TDC) as well as integral controller and Wind Power Dispatch Control (WPDC)
of VSG is introduced. While VSG has been commonly used to enhance system inertia due to its fast response,
this study explores an additional capability of VSG to reduce oscillations in interconnected hydro systems. By
leveraging the converter’s rapid response, VSG can dampen persistent oscillations in interconnection transmission
lines, alongside its frequency control function.

The proposed search process comprises two distinct stages: Stage-1 involves Nonlinear Optimization using
the Interior Point Method, and Stage-2 entails Refinement using the Meta-Heuristic MRFO.

To easy understand the explanation of the proposed methodology, the Figure (1) shows the system to be
optimized. For each hydro plant, the variables that should be optimized are: Kp, Ki, Kd, Td, Rt, TR, B and g
named respectively as follow: proportional, integral, derivative gains and the time constant of the derivative filter
of the PID controller, temporary droop parameter, the reset time, Bias and tie line gain. The other hydro parameter
are: TG is the hydro turbine speed governor time constant; TW is the water starting time; ∆PL,h is the active
power load perturbation; K12 is the transmission line constant, ∆P12 is the tie line power deviation, ∆PG is the
active power generation deviation; ∆GV is the valve speed of the governor; Kps is the power system gain, Tps is
the power system time constant; ∆FR is the frequency variation, Rp is the permanent governor speed regulation
parameter; 1

R is the droop characteristic; Ẋclose
GV is the valve opening speed limit (maximum valve speed); Ẋopen

GV is
the valve closing speed limit (minimum valve speed); Xclose

GV is the valve opening limit (maximum valve position)
and Xopen

GV is the valve closing limit (minimum valve position). On the other hand, the optimization variables
of VSG are: the integral gain of the GSV controller, Ki,v and integral gain of the wind power dispatch control,
Kdc,v . Finally, the constants variables are: the time constant of the wind power dispatch control, Tdc,v and the
time constant of the virtual mechanical actuator, Tv . Therefore, this system has eighteen variable to be optimized.

2.1 Stage 1: Nonlinear Optimization

The initial focus is on solving the optimization problem using nonlinear techniques based on the Interior
Point Method. The objective function is the integral of time squared error (ITSE), a metric previously utilized in
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Figure 1. Hydro-Wind power system.

studies concerning Load Frequency Control (LFC) investigations [13]. The principal objective revolves around
minimizing the squared deviation from the system’s established equilibrium point. To ensure realistic outcomes,
constraints are introduced to limit the optimization variables. The optimization problem is described as follow:

Min 106·

[
5 ·

(
tend∑
t=1

∆f1(t)
2 +

tend∑
t=1

ρu.(∆z1(t)− zusat,1)
2 +

tend∑
t=1

ρd.(∆z1(t)− zdsat,1)
2.

)

+ 5 ·

(
tend∑
t=1

∆f2(t)
2 +

tend∑
t=1

ρu.(∆z2(t)− zusat,2)
2 +

tend∑
t=1

ρd.(∆z2(t)− zdsat,2)
2.

)

+

(
tend∑
t=1

∆P1,2(t)
2

)] (1)

Subject to:

XS1,min
i < XS1

i < XS1,max
i (i = 1, ..., Nval). (2)

where t indicates the specific time instant; ∆f1(t) and ∆f2(t) denote the time-dependent output frequency de-
viations in Area 1 and Area 2, respectively. Similarly, ∆z1(t) and ∆z2(t) represent the time-dependent output
deviations considering the limiter effect, encompassing the limit deviations of power generation, valve speed, and
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position for Area 1 and Area 2. The values zusat,1 and zusat,2 stand for the upper saturation thresholds for the
variables ∆z1(t) and ∆z2(t), respectively, while zdsat,1 and zdsat,2 represent the lower saturation thresholds. Fur-
thermore, the symbols ρu and ρd serve as penalization parameters ensuring the satisfaction of saturation constraints
for all instances of t. Specifically, these parameters are set to zero if ∆z1(t) and ∆z2(t) remain within their re-
spective saturation limits (yusat and ydsat). Conversely, if the deviations exceed these limits at any time point, either
ρu or ρd takes a value of 1000, effectively penalizing violations. The high penalization value aims to enforce a
suitable temporal response while preventing limit breaches. Moreover, XS1

i represents the i-th variable subject
to optimization in Stage 1, with XS1,min

i and XS1,max
i denoting its lower and upper bounds. Additionally, tend

signifies the final simulation time, and Nval corresponds to the count of optimization variables under consideration.

2.2 Stage 2: Refinement using Meta-Heuristic MRFO

Following the completion of the first stage, the obtained solution may not be the global optimum. Therefore,
the proposed methodology incorporates the use of the MRFO meta-heuristic [7] to conduct a search around the
solution obtained in the Stage-1 . In other words, MRFO can be described as a process of exploration around the
Stage-1 solution. This stage comprises three main procedures:

• Establishment of Search Bounds: The determination of search boundaries involves setting upper and lower
limits within the search space, expressed as a percentage deviation from the Stage-1 solution. The search
space is bounded according to equations (3) - (5).

• Generation of Initial Population: The Initial Population is composed of Nind individuals. This population
includes Nind − 1 individuals that are randomly generated within the new boundaries, in addition to the
solution XS1 acquired during the Stage-1.

• MRFO Optimization Process: Once the initial population of Nind individuals is formed, the evolutionary
journey of the meta-heuristic MRFO begins. This process advances until the predefined maximum number
of iterations is attained. The MRFO strategy draws inspiration from the diverse foraging behaviors of manta
rays as they seek sustenance in the oceans. The algorithm integrates three operators influenced by various
foraging behaviors, including chain foraging, cyclone foraging, and somersault foraging [7]. The fitness
value of each individual is calculated utilizing equation (1). Figure 2 depicts a simplified flowchart of the
methodology proposed in this work.

XS2,max
i = min

(
XS1

i · (1 + ϕ) , XS1,max
i

)
. (3)

XS2,min
i = max

(
XS1

i · (1− ϕ) , XS1,min
i

)
. (4)

XS2,min
i < XS2

i < XS2,max
i (i = 1, ..., Nval). (5)

Figure 2. Flowchart of Hybrid Methodology.

where XS1 stands for the reference vector derived from Stage 1’s solution. XS2,max
i and XS2,min

i represent the
upper and lower limits respectively for optimization variable i in the second stage of our proposed methodology.
The parameter ϕ is the user-defined percentage factor, determining the proportion of the Stage-1 reference solution
that shapes the boundaries of the search space in Stage-2.

3 Simulations and Results

The system diagram displayed in Figure (1) is used to show the effectiveness of the proposed approach and
the system data can be found in https://github.com/gopt-ufjf. Four cases are considered as follows:

• Case 1: Only the Stage-1 method is used to tune all the parameters.
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• Case 2: The proposed hybrid method is employed, considering a search space of 10% around the the solution
obtained in Case 1.

• Case 3: The proposed hybrid method is employed, considering a search space of 25% around the solution
obtained in Case 1.

• Case 4: The proposed hybrid method is employed, considering a search space of 50% around the solution
obtained in Case 1.

The simulations were conducted using a PC with an Intel Core i7 processor running at 3.4 GHz. All al-
gorithms were implemented using MATLAB software. For each case, a population of 10 individuals was used,
represented as Nind = 10, along with a maximum iteration count set to 50, denoted as Itmax = 50.

After the simulation of the proposed mixed method, the solution of Case 1, and the best individual of each
other cases can be found in Table 1.

Table 1. The solution of Case 1, and the best individual of each other cases

X∗ Case 1 Case 2 Case 3 Case 4 X∗ Case 1 Case 2 Case 3 Case 4

Kp,1 -1.2724 -1.2939 -0.9873 -1.2445 RT,2 62.1442 58.1229 46.6081 53.6609

RR,1 61.9467 59.5963 47.1668 57.2246 TR,2 7.9239 8.0287 7.7383 7.9488

TR,1 6.5530 6.1678 6.3945 6.0184 Ki,2 0.0363 0.0338 0.0392 0.0342

Ki,1 0.0596 0.0554 0.0746 0.0554 Kd,2 2.9469 2.7714 2.2134 3.0221

Kd,1 2.8898 2.8258 3.6123 2.5403 Td,2 0.5748 0.5341 0.4324 0.5656

Td,1 0.5749 0.5919 0.4819 0.5284 B1 0.9532 0.9426 0.8984 0.9971

Ki,v 0.9247 0.8928 0.6973 0.8932 B2 0.8155 0.7955 0.8532 0.8203

Kdc,v 2.4376 2.4662 1.8500 2.0187 g1 0.2591 0.2711 0.2599 0.1662

Kp,2 -0.7992 -0.7401 -0.6560 -0.7378 g2 0.2571 0.2553 0.2754 0.2511

Table 2 displays the fitness value for each case. It should be emphasized that Case 1 has the highest fitness
value, indicating the effectiveness of the proposed hybrid model in searching for a better solution. Although the
proposed approach spend more time consumption when compared with interior point method(case-1), the solution
of this class of the problem is performed in off line. In other word, computational time is not a priority.

Table 2. Fitness function and simulation time values for each case

Case 1 2 3 4

Fitness 1430.2125 90.9981 82.1811 64.1351

Time (sec.) 1235.38 1167.09 1367.61 1337.21

Considering the solution obtained by using the proposed method, the results are displayed only for cases 1
and 4 because the solution of cases 2 and 3 are too close to case-4 . In this way, Figures 3(a) and 3(b) illustrate
the frequency deviations of areas 1 and 2, respectively. It should be noted the improvement obtained with the use
of the proposed approach (case-4), where the frequency deviation presents less oscillations. Although the VSG is
installed in Area-1, some improvement has been found at Area-2 as well. On the other hand, the adjustable control
reached by the proposed methodology is suitable to improve all connected power system.

Figures 4(a) and 4(a) displays the deviation in active power generation of the hydro plants for areas 1 and
2, respectively. It can be observed that the generation of the hydraulic power plants increases progressively until
it matches the entire load variation in a steady state. This phenomenon stems from the swift action of the Virtual
Synchronous Generator (VSG), which effectively absorbs a significant portion of the load variation in the initial
moments after the disturbance. This action serves to prevent substantial inverse responses in the hydraulic turbines
and abrupt fluctuations in generation. Subsequently, the load gradually shifts to the hydraulic plants due to the
influence of the wind generation dispatch control. This control mechanism restores the VSG generation variation
to zero in steady state. The insights gleaned from this analysis are further validated by Figure 5(a), which depicts
the generation variation of the VSG. These characteristics are more evident in case-4 where the variables were
optimized via proposed mixed algorithm.
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Figure 5(b) shows the tie-line power deviation. Once again, the improvement obtained with the adjustment
of the variables through the proposed methodology can be confirmed. That is, the reduction in oscillations as well
as the time to reach steady state were greatly reduced.

(a) Area 1 (b) Area 2

Figure 3. Frequency deviations

(a) Area 1 (b) Area 2

Figure 4. Hydro power generation deviations

(a) Power generation deviation of VSG (b) Tie-line power deviation

Figure 5. Power deviations of VSG and Tie-line

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023



G. Schreider, L. Nepomuceno, E. Oliveira, A. Paula, L. Oliveira, I. Silva

4 Conclusions

This paper presented a novel methodology for tuning Load Frequency Control (LFC) parameters in a hydro-
wind interconnected power system. This approach combines nonlinear programming with the Manta Ray Foraging
Optimization (MRFO) metaheuristic. The results demonstrate the promising nature of this methodology, highlight-
ing the following key aspects:

• The proposed hybrid methodology achieves notable reductions in both frequency deviations and system
interchange power flow.

• The fitness values attained through simulations employing the proposed hybrid methodology are consistently
smaller than those obtained using the interior point method.

• The VSG prevents extensive power variations in the hydro turbines, resulting in reduced frequency deviations
mainly for optimized control using the mixed approach.

For future studies and research, the inclusion of wind variability in the model and the exploration of secondary
frequency control within the Generator Speed Variation (GSV) control scheme should be considered.
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