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Abstract. Structural analysis in civil engineering is the method, in which, the response of a real-world structure 
before its design and construction is predicted. For any non-simplistic structure, it's hard to conceive the analysis 
by hand without relying on simplifications, that by themselves, sacrifices precision of the analytical solutions. 
Therefore, to solve these structures quickly and accurately, a computational tool is needed. These computational 
tools, usually available in commercial version, come at a high monetary cost, causing inaccessibility for students 
to have access, even for confirming and/or learning purposes. In this regard, this paper proposes to develop a free 
and open-source computational tool, able to make structural analysis of reticular structures in 3D linear-static 
regime. To make it possible, the Finite Element Method for structural discretization and the Python programming 
language were used. Analytical and numerical examples available in the literature were exhaustively tested. The 
differences between the solutions obtained with the numerical tool and the reference solutions are in the range of 
10-7 to 10-5 showing the good performance of the implemented tool for the tested examples.  
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1  Introduction 

Engineering programs related to structural analysis help the user to find solutions for a given problem. Many 
engineering problems can be expressed in terms of partial differential derivatives and have analytical solution. 
However, in real problems, this feature is not observed and it is necessary to use a numerical tool to obtain 
approximate solutions to the problem. A very widespread method for calculating approximate solutions is the 
Finite Element Method (FEM). Its main characteristic is to divide a body into finite elements, connected by nodes, 
and obtain an approximate solution to the analyzed problem (Zienkiewicz and Taylor [1], Hughes [2], Oden and 
Reddy [3]).  

There are different methods to derive the finite element system of equations, among them the variational 
methods and the weighted residuals method stand out (Zienkiewicz and Taylor [1], Hughes [2], Oden and Reddy 
[3], Reddy [4]). In this paper an energy method was used to derive the system of equations of the 3D reticular 
finite element. This method consists of writing the total potential energy functional of the element and applying 
the Principle of Potential Energy Stationarity. This principle, states that of all displacements fields which satisfy 
the prescribed constraint conditions, the correct state is that which makes the total energy of the structure at it’s 
minimum. The choice of an energy method is due to the simplicity of the physical concepts of external work and 
strain energy involved in this formulation when compared to the mathematical refining of other methods.  

The finite element developed here has two nodes and six degrees of freedom per node, totaling twelve 
degrees of freedom per element. The nodal parameters are translations and rotations. A cubic polynomial and a 
linear polynomial are used, respectively, to approximate the solutions of the problem and describe the loading. 
The total potential energy functional and the Potential Energy Stationarity Principle are used to obtain the finite 
element equations system. Python 3.10.7 programming language and Spyder IDE 5.4.4 are used to implement the 
developed algorithm. After determining the problem unknowns, displacements and rotations, by solving the system 
of equations gave by Hooke’s Law, the internal forces and support reactions are determined in the post processing 
phase. To validate the implemented code, some examples available in the literature were tested and show that the 
code was successfully implemented. 

There are different computational tools for structural analysis, usually available in commercial version. A 
similar educational and open-source programs is presented by Rangel and Martha [5]. So, the main purpose of this 
paper is to develop a free and open-source computational tool in Python language, able to make structural analysis 
of reticular structures in 3D linear-static regime using the FEM. The code is available in a GitHub repository. The 
link is presented in the conclusion. 
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2  Finite Element Formulation for 3D Reticular Linear Static Analysis 

Let a frame finite element of length (L), cross-section area (A), Young modulus (E), shear modulus (G) and 
inertial moments (IX, IY and IZ), be subjected to a linearly distributed load q(x). Since, by hypothesis, the element 
is subjected to axial forces, bending forces and torsion, the nodal parameters associated with nodes i and j of this 
finite element are rotations and translations as shown in Fig. 1. 
 

 

Figure 1. Finite element nodal degrees of freedom. 
 

The governing equation of the problem can be obtained by the balance of forces or alternatively by the 
stationarity condition of the functional energy, which for static problems is given by Eq. (1). 
 

 U W    (1) 
 
where U is the strain energy and W is the work done by external loads. 

For linear elastic bodies under triaxial stress and strain, the strain energy U in Eq. (1) is given by Eq. (2). 
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For the element shown in Fig. 1, the strain energy U in Eq. 1, has the contribution of axial forces, bending 

forces and torsion as shown in Eq. (3). 
 

 x y x z
a b b tU          (3) 

 
The strain energy for axial forces contribution is given by Eq. (4). 
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The strain energy for bending contributions in x-y and x-z plane is given by Eq. (5). 
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The strain energy for torsion contribution is given by Eq. (6). 
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According to the order of the derivatives present in the energy functional, polynomials of different order are 

chosen to approximate the solutions. The coeficientes in these polinomials are constants, obtained from the 
boundary conditions of the finite element. After the replacement of the coefficients in the aproximations, the 
resulting equation is derived according to the order of the derivative in the energy functional under analysis, and 
after all the necessary operations, the functional is minimized by differentiating with respect to the unknowns of 
the problem. 

This is then done for each contribution, that is, axial, x-y and x-z bendings and torsion. The terms obtained 
can be organized into a single matrix, called the stiffness matrix, or K for short, from the Hooke’s Law. Respecting 
the numbering of the degrees of freedom of the element shown in Fig. 1. The resulting K matrix, is given in Eq. 
7. 
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3  Rotation of Axes in Three Dimensions 

The space frame element may have its principal axes in general directions then, there are various ways in 
which the orientation of theses axes can be defined in Weaver and Gere [6]. In the present formulation, the rotation 
matrix R has the form shown in Eq. (8). 
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In Eq. (8), R is a 3x3 matrix given by Eq. (9). 
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Se 0Cxz  , 0  is a 3x3 matrix,  is the principal axes angle, ( )j iCx x x L  , ( )j iCy y y L  , 

( )j iCz z z L  , 2 2Cxz Cx Cz   and      2 2 2

j i j i j iL x x y y z z      . 

 

On the other hand, if 0Cxz   the matrix R  is given by Eq. (10). 
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4  Python Computational Implementations Aspects 

Python is an object-oriented and open source programming language often used for rapid application 
development. Having simple syntax, with an emphasis on readability, reduces the cost of maintaining the program, 
while its vast library of functions encourages reuse and extensibility. Because of these characteristics, the 3D 
reticular finite element formulation was implemented in Python 3.10.7 and Spyder IDE 5.4.4. The proposed 
algorithm can be subdivided into three phases, that is, pre-processing, processing and post-processing. In the pre-
processing phase, the discretization and the physical and geometric properties of the problem are provided and 
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then, used by the processing phase to determine the unknowns of the problem, that is, the displacements. Finally, 
in the post-processing phase, the nodal displacements, are used to determine the internal forces and support 
reactions. Numpy library 1.25.1, for optimized vector and matrices routines, was used. It is important to mention 
that the contributions to the global matrix are effected through the incidence rules that relate the nodes of a given 
element with its final position in the global system of the structure. For more details, the authors suggest to consult 
Weaver and Gere [6]. 

5  Numerical Results and Validation 

Analytical and numerical examples available in the literature were exhaustively tested and the obtained 
results showed the good performance of the implemented tool for the tested examples. To demonstrate its good 
performance, three examples available in the literature are presented in this section. 

5.1 Example 1: Space Frame presented by Soriano [7] (2014) 

In this example, the space frame shown in Fig. 2, presented by Soriano [7], is analyzed. The space frame has 
three members and all member have the same cross-sectional properties, in which it’s values, are all unitary (cross-
section area, and inertias). The numerical values, in SI units, can be seen in Fig. 2. The support point A is fixed 
and a uniformly distributed load q = 20 kN/m is acting in the vertical direction on members BC and CD. For the 
numerical analysis, each member, that is, AB, BC and CD were discretized in one finite element. Tables 1-2 
compares the solution obtained for reactions values and internal forces with the reference solution presented by 
Soriano [7], respectively. Analyzing the obtained results, it is possible to verify that the implemented formulation 
is returning consistent solutions.  

Table 2. Example 1 Internal nodal forces (Fi in kN and Mi in kN∙m). 

  Element AB Element BC Element CD 
Node Internal Force Soriano 

(2014) 
Author 
(2023) 

Soriano 
(2014) 

Author (2023) Soriano (2014) Author 
(2023) 

i 

Fx 74 74 -10 -10 0 0 
Fy -10 -10 -74 -74 -32 -32 
Fz 0 0 0 0 10 10 
Mx 16 16 25,6 25,6 0 0 
My 25,6 25,6 -16 -16 -16 -16 
Mz -146,3 -146,3 -111,3 -111,3 -25,6 -25,6 

j 

Fx -74 -74 10 10 0 0 
Fy 10 10 32 32 0 0 
Fz 0 0 0 0 -10 -10 
Mx -16 -16 -25,6 -25,6 0 0 
My -25,6 -25,6 16 16 0 0 
Mz 111,3 111,3 0 0 0 0 

 

 
Table 1. Example 1 Reactions values (Ri in kN and Mi in kN∙m). 

 

Reaction 
Node A 

Soriano 
(2014) 

Author (2023) 

Rx -10 -10 
Ry 0 0 
Rz 74 74 
Mx 25,6 25,6 
My -146,3 -146,3 
Mz 16 16 

 

Figure 2. Space frame by Soriano [7].  
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5.2 Example 2: Grid Structure presented presented by Soriano [7] (2014) 

The grid structure shown in Fig. 3 is in a horizontal plane (X-Y plane) and carries a uniformly distributed 
load q = 20 kN/m acting in the vertical direction, Soriano [7]. The grid structure has three members and all member 
have the same cross-sectional properties, the values being the same as the first example. The numerical values, in 
SI units, can be seen in Fig. 3.  For the numerical analysis, each member, was discretized in one finite element. 
Tables 3-4 compares the solution obtained for internal forces and reaction values with the reference solution, 
respectively. The differences between the solutions obtained with the numerical tool and the reference solutions 
are practically non-existent and show the good performance of the implemented tool for the tested examples. It is 
important to mention that in Tables 2 and 3, the results already consider the differences between the coordinate 
systems adopted by the Reference and by the present formulation. 
 

 

Figure 3. Grid structures presented by Soriano [7]. 

Table 3. Example 2 Internal nodal forces (Fi in kN and Mi in kN∙m). 

  Element AB Element BC Element CD 
Node Internal 

Force 
Soriano 
(2014) 

Author 
(2023) 

Soriano 
(2014) 

Author 
(2023) 

Soriano 
(2014) 

Author 
(2023) 

i 

Fx 0 0 0 0 0 0 
Fy 0 0 0 0 0 0 
Fz 90 90 35 35 90 90 
Mx 0 0 -202,5 -202,5 0 0 
My 0 0 0 0 -202,5 -202,5 
Mz 0 0 0 0 0 0 

j 

Fx 0 0 0 0 0 0 
Fy 0 0 0 0 0 0 
Fz 0 0 -35 -35 0 0 
Mx 0 0 -202,5 -202,5 0 0 
My 202,5 202,5 0 0 0 0 
Mz 0 0 0 0 0 0 

Table 4. Example 2 Reactions values (Ri in kN and Mi in kN∙m). 

 Node A Node B Node C 
Reaction Soriano 

(2014) 
Author 
(2023) 

Soriano 
(2014) 

Author 
(2023) 

Soriano 
(2014) 

Author 
(2023) 

Rx 0 0 0 0 0 0 
Ry 0 0 0 0 0 0 
Rz 90 90 35 35 125 125 
Mx 0 0 0 0 0 0 
My 0 0 0 0 0 0 
Mz 0 0 0 0 0 0 
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5.3 Example 3: Space Frame presented by Weaver and Gere [6] (1990) 

In this example, the space frame shown in Fig. 4, presented by Weaver and Gere [6], is analyzed. The space 
frame has three members and all member have the same cross-sectional properties. The numerical values, in SI 
units, are:      3 L m , 20.01 xA m , 3 42 10  xI m  , 3 41 10  y zI I m   , 6 2200 10E kN m  , 6 280 10G kN m   

and 60 P kN . The support points C and D have six constraints each. For the numerical analysis, the members AC 
and BD were discretized in one finite element and the member AB was discretized in two finite elements. The 
joint loads on the frame are a 2P force in the positive x direction at point A, a P force in the negative y direction 
at point B and a PL moment in the negative z sense at B. A 4P force in the positive z direction is applied at the 
midlength of the member AB. Tables 5-7 compares the solution obtained for displacements, internal forces and 
reaction values with the reference solution, respectively. 
 

 

Figure 4. Space frame adapted from Weaver and Gere [6]. 

Table 5. Example 3 Displacements (Ui in m and i in rad). 

Displacem
ent 

Node A Node B 
Weaver & Gere 

(1990) 
Author 
(2023) 

Weaver & Gere 
(1990) 

Author  
(2023) 

Ux -85,941E-05 -85,941E-05 -11,761E-04 -11,7605E-04 
Uy 57,764E-06 57,764E-06 32,532E-04 32,5316E-04 
Uz 50,076E-04 50,076E-04 52,555E-04 52,5552E-04 
x 23,933E-04 23,933E-04 12,884E-04 12,8843E-04 
y -16,232E-04 -16,2317E-04 17,209E-04 17,2094E-04 
z 68,133E-05 68,1331E-05 -77,147E-05 -77,1469E-05 

Table 6. Example 3 Internal nodal forces (Fi in kN and Mi in kN∙m). 

Node 
Internal 
Force 

Member AB Member AC Member BD 
Weaver & Gere 

(1990) 
Author  
(2023) 

Weaver & Gere 
(1990) 

Author  
(2023) 

Weaver & Gere 
(1990) 

Author  
(2023) 

i 

Fx 105,548 105,548 -38,509 -38,509 183,623 183,623 
Fy -38,509 -38,509 14,452 14,452 9,192 9,192 
Fz -126,013 -126,013 -126,013 -126,013 5,967 5,967 
Mx 29,464 29,464 86,569 86,569 -21,404 -21,404 
My 86,569 86,569 348,575 348,575 46,703 46,703 
Mz -67,1 -67,1 -23,744 -23,7438 -32,181 -32,181 

j 

Fx -105,548 -105,548 38,509 38,509 -183,623 -183,623 
Fy 38,509 38,509 -14,452 -14,452 -9,192 -9,192 
Fz -113,987 -113,987 126,013 126,013 -5,967 -5,967 
Mx -29,464 -29,464 -86,569 -86,569 21,404 21,404 
My -50,491 -50,491 29,464 29,464 -77,711 -77,711 
Mz -163,954 -163,954 67,1 67,1 79,946 79,946 

A 

C 

D 

B 
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Table 7. Example 3 Reactions values (Ri in kN and Mi in kN∙m). 

Reaction 
Node C Node D 

Weaver & Gere 
(1990) 

Author 
(2023) 

Weaver & Gere 
(1990) 

Author 
(2023) 

Rx -14,452 -14,452 -105,548 -105,548 
Ry -38,509 -38,509 98,509 98,509 
Rz -126,013 -126,013 -113,987 -113,987 
Mx -348,575 -348,575 -75,898 -75,898 
My 86,569 86,569 -75,808 -75,808 
Mz -23,744 -23,744 37,163 37,163 

The differences between the solutions obtained with the numerical tool and the reference solutions are 
practically non-existent and show the good performance of the implemented tool for the tested examples. 

6  Conclusions 

A 3D finite element formulation in Python language for the reticular structural linear analysis was 
successfully implemented as it is possible to conclude from the obtained results. It is important to mention that in 
this first moment the focus was on the development of the first functions of the program, that is, the development 
of a tool for the analysis of 3D reticular structures in a linear elastic regime. Future works will aim to develop a 
graphical interface that will enable a more user-friendly environment for input data, currently done through a text 
file or directly in the programming environment. It concludes, with a free and open-source Python computation 
code, open for all to use, and such, the foundations for future engineers to further expand its functionalities is 
available. The source code is available in the GitHub repository under GNU v3 license. The GitHub link is: 
https://github.com/gCarvalhoFerreira/FEM-Python. 
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