
Modeling in digital rock analysis: an image segmentation tutorial

Felipe F. Alves1, João Leal1, Ricardo Leiderman1, Andre Pereira1

1Laboratory of Scientific Computing, Dept. of Computer Science, Universidade Federal Fluminense
Av. Gal. Milton Tavares de Souza, s/n, 24210-310, RJ/Niteroi, Brazil
andre@ic.uff.br

Abstract. Image-based simulations are fundamental to assist in rock characterizations using a fully digital envi-
ronment. The basic workflow in digital rock physics or petrophysics comprises three general phases: 1) 3-D scan:
image acquisition and reconstruction, 2) 3-D modeling: image processing and segmentation, and 3) 3-D analysis:
image simulation and characterization. In this work, we focus in the modeling phase, by presenting two educa-
tional approaches to perform image segmentation of rock samples. The first approach relies completely in the use
of software with user interfaces, whereas the second one is a fully script-based approach relying in open source
packages with Python APIs. Although we describe educational approaches, which adopt compact sets of dedi-
cated strategies, they can also be combined to achieve the best performance and learning process. We assume here
that the images were acquired by high-resolution X-ray micro-computed tomography (micro-CT), and that they
will be employed to perform rock characterizations, such as determination of the effective absolute permeability
of porous materials based on the concepts of numerical homogenization. Therefore, step-by-step procedures and
implementations to achieve high quality segmented images are described.

Keywords: image segmentation, petrophysics, micro-CT, image-based analysis, modeling

1 Introduction

Computer simulations have been increasingly adopted as an attractive auxiliary tool for laboratory physical
tests. However, realistic models are expected in order to obtain accurate responses. The challenge of creating
realistic models to perform the simulations can be overcome by means of sophisticated imaging technologies such
as high-resolution X-ray micro-computed tomography (micro-CT). This technology allows scanning the internal
micro-structure of the material, transforming it into realistic digital models. In this sense, in the context of rock
physics and petrophysics, image-based simulations are fundamental for the digital characterization of rocks.

In the basic digital rock characterization workflow, 3-D modeling is the phase that follows image acquisition
and precedes image-based analysis, typically consisting of image processing and image segmentation tasks. There
is a vast literature on image segmentation. It is possible to find works that present from simple to sophisticated
segmentation methods. However, most works focus on describing new developments or applying state-of-the-art
methods to solve challenging problems. Although these works have played a key role in advancing the field, we
have identified that beginners in the field still have great difficulty in reproducing them or in acquiring the necessary
skills to apply those sophisticated method to their problems of interest.

In this work, we present two educational approaches to perform rock image segmentation, following a
tutorial-based strategy and describing methods to obtain high-quality segmented images. The procedures to per-
form image segmentation of porous materials have several peculiarities. In order to segment the rock images
addressed in this paper, a sequence of steps are followed. They are meant to take an image from the micro-CT
output to a labeled one. The concepts and objectives of each step and the instructions on how to apply those, being
it by the use of in-house Python scripts or by use of ImageJ, a publicly available image processing software, will
be explained in the next sections.

This paper is suggested as a use case in lectures and training for senior undergraduate and graduate students.
Since it covers the application of image processing and segmentation in both theoretical and practical perspectives,
it can be a powerful tool when teaching subjects such as material modeling, petrophysics, and other classes.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023

Modeling in digital rock analysis: an image segmentation tutorial

2 Methodology Using Software with Apps

As a first approach, the entire workflow to segment the sample images used as the example in this paper will
be completed using exclusively the publicly available application FIJI/ImageJ, which is a very user friendly tool
that requires no coding knowledge at all. Notice that, in this application, it’s possible to load a single image at a
time, or to load an image stack, which is the ideal choice for segmenting several micro-CT slices at a time.

2.1 Image Pre-processing

Regardless of the chosen approach to deal with the stack of images created by micro-CT scanning of the
rock samples, many common steps must be taken. The first step to process the micro-CT images is to crop the
region that is relevant to the analysis. This occurs because a large part of a micro-CT image can be the residual
background of the scanning, as can be seen in Fig. 1a. Therefore, a cropping operation is required to remove this
background.

(a) Cropping sequence

(b) Normalizing sequence

(c) Denoising sequence (d) Fully pre-processed image

Figure 1. Pre-processing steps using the ImageJ

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023

F. Alves, J. Leal, R. Leiderman, A. Pereira

Using image-processing techniques, it is possible to recover valuable information from the images. After
the cropping, the images must undergo another step called normalization. This operation maps the range of pixel
values in the original image to a new range, usually, from 0 to 1. In the case of 16-bit images, the intensities range
between 0 and 65535, which represent the minimum and the maximum value of this format. The main reason for
performing a normalization operation is to achieve a more balanced distribution of pixel intensity values. This
significantly enhances image contrast, which, in turn aids in the next steps.

It’s important to notice that there are two possible ways to perform this operation: it could be done using
the histogram of each stack slice, or by using the combined histogram of all stack slices. The second approach
was chosen, as some images may lack high or low-intensity pixels, depending on the position of rock components.
This can lead to relative differences in the histogram’s essential features. Histograms, in general, are frequency
distributions, and in the case of images they describe the frequency of the intensity values that occur in an image.
As histograms depict image statistics in an easily interpreted visual format, they can be used to improve the visual
appearance of the images [1].

The last pre-processing step consists in applying a denoising filter. For the images chosen for demonstration
in this paper, as well as for a large number of micro-CT images, a non-local means denoising filter is a great option
[1]. This filter’s purpose is to reduce image noise, while preserving the textures and borders from the scanned
materials. This way, the resulting image retains most of the important features of the original images.

After importing the image stack, the steps shown in Figs. 1a, 1b and 1c should be carried out to perform the
cropping, normalization and denoising operations, respectively. Figure 1d shows the result of the entire workflow.
Notice that, as mentioned on the normalization step, it’s very important to check ”Use stack histogram”, as this
improves the results during the segmentation process. All of the above operations were performed in the entire
image sequence at once.

2.2 Image Segmentation

Once the images are pre-processed, it is possible to move to the segmentation process. Three different meth-
ods are introduced here: image thresholding, which was done by using ImageJ software and also by using the
developed Python scripts; a machine learning algorithm, implemented in ImageJ’s Weka Trainanable Segmenta-
tion plug-in; and a deep learning algorithm, implemented in Python scripts. These operations are described in the
following subsections.

Thresholding. For the first segmentation method, image thresholding was used. This process consists in evaluating
each pixel individually, and if its intensity is greater than a certain threshold value, it gets labeled a certain class.
However, if the pixel intensity value is less than the threshold, it is assigned another class. In the end, all of the
image’s pixels are labeled with a number representing their respective class instead of their intensities. Figure 2d
is an example of the segmented images obtained by the described method.

The pre-processing steps described above are specially important when segmenting by thresholding, since
the higher contrast and the decreased noise increases the differences between material phases. This can be visually
perceived, but in a more technical way, the use of image histograms is desired. In Figs. 2a and 2b, it can be noticed
that after the pre-processing operations two peaks can be more clearly seen, with each one representing pixels in
each of the material’s phases (pore and solid phases).

Another relevant factor is the type of threshold used. In this case, the best results were obtained when Otsu
threshold [2] was chosen. It can be explained by the fact that this thresholding technique minimizes the variance
in each class, which is excellent for the type of histogram presented by those images. So, in order to perform
thresholding segmentation using ImageJ software, the steps shown in Fig. 2c should be followed. In this specific
example, the primary goal is to distinguish pores from all solid phases. Therefore, a single thresholding operation
is sufficient. If it becomes necessary to identify all the existing phases, multiple thresholding operations will need
to be performed.

Trainable Weka Segmentation. Artificial Intelligence plays a crucial role in image segmentation, particularly in
highly challenging scenarios where various textures render conventional techniques ineffective. However, utilizing
AI poses specific challenges, the most prominent being the necessity to provide a machine learning model with
training data. In this context, classifying pixels in a set of images requires some pixels from the entire dataset to
be previously labeled and employed as training data.

Therefore, the second segmentation method to be described in this paper, is the use of a machine learning
algorithm, implemented in the open-source software Fiji/ImageJ [3], in a plug-in called Trainable Weka Segmen-
tation [4]. This plug-in allows the user to manually select pixels and assign them different classes. After this, a
classifier model is created, trained, using user input data as training labels, and saved. It can later be loaded and

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023

Modeling in digital rock analysis: an image segmentation tutorial

run to segment a complete image data set. In order to use trainable Weka segmentation, the steps shown in Fig. 3
should be followed. This plug-in allows user to create more than two classes, if recognition of multiple phases is
desired. In the above example, pores were classified as class 2, while all other phases were classified as class 1.
Usually, manually selecting around 10 regions for each class is enough to achieve very good segmentation results.

(a) Image histogram before pre-processing (b) Image histogram after pre-processing

(c) Thresholding sequence (d) Image segmented by thresholding

Figure 2. Thresholding steps using the ImageJ

Figure 3. Trainable Weka Segmentation sequence

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023

F. Alves, J. Leal, R. Leiderman, A. Pereira

3 Methodology Using Packages with Scripts

Another alternative to segment images is to use scripts. In this study, Python was chosen in conjunction
with some packages and libraries, such as openCV, numpy, scikit-learn, skimage, tensorflow, Keras, glob and os.
All of them can be found online for free and are open-source. In the next subsections, the pre-processing and
segmentation methodologies will be detailed, along with the scripts used in each step.

3.1 Image Pre-processing

As mentioned before, in the developed Python script, the pre-processing sequence consists of cropping the
original micro-CT stack, normalizing the slices of the image stack and application of non-local means denoising
filter. With the goal of making the code as educational as possible, each one of these steps are executed inside a
single Python function, which will be presented and explained in the following sub-sections (Fig. 4).

Image Cropping. To remove the borders of the micro-CT images and reduce memory usage, a cropping algorithm
was implemented. It can be seen in Listing 1, where a function is defined. It takes an image stack and the
dimensions for the cropped image, and returns a stack already cropped. Also, the cropped image is taken from the
original image’s center.

Listing 1. Image Cropping
def crop_image(stack,new_dim):

n_images, H, L = stack.shape
return stack[:,(H-new_dim[0])//2:(H+new_dim[0])//2,(L-new_dim[1])//2:(L+new_dim[1])//2]

Image Normalization. As previously discussed, a normalization operation is required to increase image contrast,
which will help on the following steps of the image segmentation. For this purpose, the function shown in Listing
2 was used. It receives an image stack and reads the minimum and maximum value of pixels’ intensity. After this,
it maps the pixel range of each image to a range from 0 to 1 and then back to the stack’s original range.

Listing 2. Image Normalization
def normalize(stack):

max = np.max(stack)
min = np.min(stack)
max_poss = np.iinfo(stack.dtype).max
for i in range(stack.shape[0]):

aux_img = (stack[i]-min)/(max-min) # between 0 and 1
stack[i] = aux_img * max_poss # to complete uint16

return stack

Image Denoising. The application of non-local means denoising filter was done by the use of two functions already
implemented in the Scikit Image package, ”estimate sigma” and ”denoise nl means”. These functions allow the
application of the filter to the entire image stack, instead of doing it slice by slice, as seen in Listing 3.

Listing 3. Image Denoised
def non_local_means(stack):

max_poss = np.iinfo(stack.dtype).max
stack_type = stack.dtype
sigma_est = np.mean(estimate_sigma(stack))
stack=denoise_nl_means(stack,h=1.15*sigma_est,fast_mode=True,patch_size=5,patch_distance=3)
return (stack*max_poss).astype(stack_type)

3.2 Image Segmentation

As previously mentioned, after the pre-processing step, the images undergo segmentation to generate their
labels. In Python, both the threshold and U-net methods were employed. The implementation of each method will
be explained in the subsequent subsections.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023

Modeling in digital rock analysis: an image segmentation tutorial

(a) First slice of the original data set (b) Cropped image

(c) Normalized image (d) Filtered image

Figure 4. Pre-processing steps using Python scripts

Threshold. The function presented in Listing 4 is using the openCV packages to threshold each image using the
Otsu method. It also return the result stack as a 8-bit image, since the pixels’ values is now only its label.

Listing 4. Image Threshold
def threshold(stack):

for i in range(stack.shape[0]):
_,aux=cv2.threshold(stack[i],0,np.iinfo(stack.dtype).max,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
stack[i] = aux

return stack.astype(np.uint8)

U-net. Even though conventional machine learning algorithms are very capable of achieving great results in image
segmentation tasks, they can be out-performed by more modern Deep Learning Algorithms. In this context, there is
a huge amount of possibilities when it comes to choosing the best network architecture, as different problems will
require different approaches. For this paper, the U-net architecture will be used, mostly for its ability to segment
the images with a fairly small training data set [5].

Since the U-net code is extensive, it will be made available in a git repository, while only its working process
will be discussed here, with a few examples. Furthermore, as a neural network, U-net will need training data, which
are images from our interest data set already segmented. This can be obtained by any other method explained
before in this study. For this training, 50 images were used as training data set, from a total of 1401. After this data
set has been generated, data augmentation can be done, so the U-net can have more inputs and develop a better
segmentation capability. This was obtained by rotating the images and implemented in the provided code. It’s
shown in Listing 5. After this, each image can generate up to 7 new images. So, the training data set went from
50 to 400 images. Also in the data augmentation, the labels are encoded. Their values, that after threshold become
discrete, are now mapped as integer from 0 to number of classes minus 1. This is shown in Listing 6. Further, they
are changed into categorical, which is necessary to generate the U-net model. This code is shown in Listing 7.

Another important issue to discuss is the model’s architecture. Different U-net architectures were tested and
the one that most fit for both efficiency and results was also provided. With all this defined, the U-net model can
now be trained. The training was done with the code available in the git repository. It took a total of 4 hours and
resulted in a 96% of accuracy when compared to the threshold method. After this, the trained model can be used
to segment all data set without having to normalize or denoise, reducing the time spent.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023

F. Alves, J. Leal, R. Leiderman, A. Pereira

Listing 5. Data augmentation
def save_stack(stack,path,inicial_value=0):

for i in range(stack.shape[0]):
cv2.imwrite(path + "\%04i.tiff" %(i+inicial_value), stack[i])

return
save_stack(stack,final_path,0)
save_stack(np.flip(stack,1),final_path,stack.shape[0]*1)
save_stack(np.flip(stack,2),final_path,stack.shape[0]*2)
save_stack(np.flip(np.flip(stack,1),2),final_path,stack.shape[0]*3)
stack = np.rot90(stack,1,(1,2))
save_stack(stack,final_path,stack.shape[0]*4)
save_stack(np.flip(stack,1),final_path,stack.shape[0]*5)
save_stack(np.flip(stack,2),final_path,stack.shape[0]*6)
save_stack(np.flip(np.flip(stack,1),2),final_path,stack.shape[0]*7)

Listing 6. Label encoder
def encode_masks(stack):

from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
n_images, height, width = stack.shape
stack_reshaped = stack.reshape(-1,1)
stack_reshaped_encoded = labelencoder.fit_transform(np.ravel(stack_reshaped))
stack = stack_reshaped_encoded.reshape(n_images, height, width).astype(np.uint8)
return stack

Listing 7. Image to categorical
imasks_cat=to_categorical(y_train, num_classes=n_classes)
y_train_cat=imasks_cat.reshape((y_train.shape[0],y_train.shape[1],y_train.shape[2],n_classes))

4 Conclusions

In this paper, we described image processing and segmentation as modeling phase in digital rock characteri-
zations, by presenting two educational approaches. The first approach relied completely in the use of software with
user interfaces, whereas the second one was a fully script-based approach relying in open source packages with
Python APIs. These approaches can be combined to achieve the best performance and learning process. Papers
on image segmentation often describe new developments or applications of state-of-the-art methods to solve chal-
lenging segmentation problems. This leads to the a lack of important steps for the understanding of the reader, who
possibly does not have extensive experience with all the subjects involved in the process of image segmentation.

Acknowledgements. This research was carried out in association with the ongoing R&D project registered as ANP
n o 21289–4, “Desenvolvimento de modelos matemáticos, estatı́sticos e computacionais para o aperfeiçoamento da
caracterização petrofı́sica de reservatórios por Ressonância Magnética Nuclear (RMN)” (UFF/Shell Brasil/ANP),
sponsored by Shell Brasil under the ANP R&D levy as “Compromisso de Investimentos com Pesquisa e Desen-
volvimento”. The authors also recognize the support from CAPES, CNPq and FAPERJ.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] W. Burger and M. Burge. Principles of digital image processing: fundamental techniques. Springer, 2009.
[2] M. Sezgin and B. l. Sankur. Survey over image thresholding techniques and quantitative performance evalua-
tion. Journal of Electronic imaging, vol. 13, n. 1, pp. 146–168, 2004.
[3] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, and others. Fiji:
an open-source platform for biological-image analysis. Nature methods, vol. 9, n. 7, pp. 676–682, 2012.
[4] D. Legland, I. Arganda-Carreras, and P. Andrey. Morpholibj: integrated library and plugins for mathematical
morphology with imagej. Bioinformatics, vol. 32, n. 22, pp. 3532–3534, 2016.
[5] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.
Medical Image Computing and Computer-Assisted Intervention. MICCAI 2015, vol. 1, n. 1, pp. 1–8, 2015.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023

	Introduction
	Methodology Using Software with Apps
	Image Pre-processing
	Image Segmentation

	Methodology Using Packages with Scripts
	Image Pre-processing
	Image Segmentation

	Conclusions

