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Abstract. Backcalculation is a procedure used to estimate the material properties of pavement layers from results
of non-destructive tests, as the Falling Weight Deflectometer. It is important to assess the quality of a pavement
construction and/or to monitor its condition during its lifespan. The Finite Element Method can be used to evaluate
pavement deflections, provided that the loading and the properties of each layer are known. Assuming linear elas-
tic behavior and known Poisson’s ratios, the backcalculation procedure consists in the determination of the elastic
moduli that minimize the differences between the simulated and measured deflections. Thus, pavement backcalcu-
lation corresponds to the solution of a Nonlinear Least Squares problem, where the unknown parameters (elastic
moduli) are strictly positive. This paper presents a simply approach to include bound constraints in the Gauss-
Newton and the Levenberg–Marquardt methods to ensure convergence to physically meaningful solutions. The
accuracy, robustness, and computational efficiency of the modified algorithms are compared in the backcalculation
of asphalt pavements.
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1 Introduction

Experimental data can be represented by different models that depend on a set of parameters. Regression
procedures consist in determine these parameters in order to fit the data with the model. The regression can be
obtained by the minimization of the sum of squares of residues, which consists of the Nonlinear Least Squares
(NLS) problem. Several methods can be used to solve this problem (Nocedal and Wright [1], Madsen et al. [2]).

An important NLS problem in engineering is pavement backcalculation, which consists of the determination
of each pavement layer’s elastic modulus. These moduli are the parameters of the finite element elastic model, that
is used to predict the deflections of the pavement surface at defined radial distances of the load application point.
This load is the same load applied in the Falling Weight Deflectometer (FWD) test, which measures deflections
also on the pavement surface (Huang [3]). The difference between each simulated and measured deflection is the
residue used in NLS function.

Although the model parameters have a clear physical meaning, optimization is a mathematical process that
does not consider this aspect. Therefore, unrealistic results can be obtained in unconstrained minimization, as
long as the objective function presents a local minimum. Since the model parameters should be in a physically
acceptable range, it is necessary to include bound constraints in the solution of NLS problems. Furthermore,
considering bounds on problem variables can improve the efficiency of optimization algorithms even if absurd
results do not need to be avoided (Gill et al. [4]).

Different alternatives can be used to create algorithms to solve bound-constrained optimization problems,
such as penalty, augmented Lagrangian, transformations, active set, and projection approaches (Gill et al. [4], Arora
[5]). Due to its simplicity, a projection approach is adopted in this work to include bound constraints in the
Gauss-Newton and Levenberg–Marquardt methods. The accuracy and robustness of the modified algorithms are
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compared using a numerical example.

2 Numerical Methods for Nonlinear Least Squares Problems

The classical form of the Nonlinear Least Squares Problem (NLS) (Nocedal and Wright [1], Madsen et al.
[2]) can be written as:

min
x∈Rn

f(x) =
1

2

m∑
i=1

(ŷi − yi)
2 =

1

2

m∑
i=1

r2i =
1

2
rT r, n ≤ m, x = [x1, ... , xn]

T , (1)

where yi is the measured value of each point i, ŷi is the corresponding simulated value that depends on the vector
of unknown parameters (x), and r is the residual vector.

This problem can be solved using different optimization algorithms. Due to their accuracy and efficiency, the
Gauss-Newton and the Levenberg–Marquardt methods are applied in this work.

2.1 Gauss-Newton

The Gauss-Newton (GN) method is obtained by the application of the Newton method to the NLS problem.
The Newton method is based on a quadratic approximation of the function to be minimized:

f(xk+1) ≈ f(xk) + dT
k gk +

1

2
dT
kHk dk, (2)

where k is the iteration number, d is the search direction, g = ∇f(x) is the gradient, and H = ∇2f(x) is the
Hessian matrix. The minimization the approximate quadratic function yields:

gk+1 ≈ gk +Hk dk = 0. (3)

Thus, the search direction (d) at each iteration k is evaluated solving the linear system:

Hk dk = −gk. (4)

If the Hessian is positive-definite then it can be easily shown that dk is a descent direction (dT
k gk < 0) and the

function value is reduced as we move in this direction.
The gradient and Hessian of the Sum of Squared Errors (SSE) function defined in eq. (1) are given by

g = JT r, H = JTJ+
m∑
i=1

ri ∇2ri, (5)

where J is the Jacobian matrix:

J = [Jij ] =

[
∂ri
∂xj

]
=

[
∂ŷi
∂xj

]
. (6)

The Gauss-Newton method is obtained neglecting the second term of the Hessian defined in eq. (5):

H ≈ JTJ. (7)

Therefore, the search direction at each iteration is computed solving the linear system:

(JT
k Jk)dk = −JT

k rk. (8)

After the computation of the search direction, the new estimate of the parameter vector is computed as

xk+1 = xk + αdk, (9)

where α is the step size along the search direction. The classical Gauss-Newton method considers α = 1.
In this work, a backtracking line search is adopted in order to improve the algorithm robustness and efficiency.

This algorithm starts with a unit step size (α0 = 1) and check the descent condition

f(xk + αl dk) < f(xk) + αl (β gT
k dk), (10)
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where l is the line search iteration and β ∈ (0, 1) (Nocedal and Wright [1], Arora [5]). If this condition is satisfied,
the step size is accepted, otherwise it is reduced:

αl+1 = η αl (11)

with η ∈ (0, 1). The process is repeated until a sufficient function decrease is obtained. It is important to note
that this approach allows for a unit step size at the solution, which is a condition for quadratic convergence of the
Newton method. Furthermore, since the objective function is reduced at each iteration, the method will eventually
converge to local minimum.

The iterative process described in eq. (9) can be stopped when:

NRMSE =

√√√√ 1

m

m∑
i=1

(
ŷi − yi

yi

)2

< tol1 or ∥g∥ < tol2, (12)

where NRMSE is the Normalized Root Mean Square Error, while and tol1 and tol2 are the convergence tolerances.
Using exact gradient and Hessian, the Newton method presents local quadratic convergence. On the other

hand, failure can occur if the Hessian is singular. Furthermore, when the initial point x0 is far from the solution,
the quadratic approximation may be not accurate, generating poor search directions, with slow improvement or
even divergence.

The convergence rate of the Gauss-Newton method depends on how close eq. (7) approximates the true
Hessian. Quadratic convergence can be obtained when the second term of the Hessian matrix defined in eq. (5) is
small close to the solution, which can occur when the residual is very small (ri ≈ 0) or the Jacobian is affine with
respect to the parameters (∇2ri = 0) (Nocedal and Wright [1]).

2.2 Levenberg–Marquardt

The Levenberg–Marquardt (LM) method (Nocedal and Wright [1], Madsen et al. [2]) was proposed as a more
robust alternative to the Gauss-Newton method. It is based on a modified form of eq. (8):

(JT
k Jk + λk I)dk = −JT

k rk, (13)

where the damping parameter (λ > 0) ensures that the coefficient matrix is positive definite, generating a descent
search direction dk at all iterations.

It is important to note that, for large damping factors, dk ≈ −gk/λk, which is a short step in the steepest
descent direction. This is a good option if the current iterate xk is far from the solution. On the other hand,
eq. (13) reduces to eq. (8) when λk is very small, generating the same search direction than the Gauss-Newton
method, which is very good in the final iterations when xk is close to the solution and Gauss-Newton can present
quadratic convergence. Since the damping factor controls not only the search direction but also the step size,
the Levenberg–Marquardt method is used without line searches. However, the new iterate is accepted only if it
decreases the error: {

xk+1 = xk + dk, if f(xk + dk) < f(xk)

xk+1 = xk, otherwise.
(14)

Convergence is checked using eq. (12).
Several schemes have been proposed in the literature to update the damping factor (Madsen et al. [2],

Transtrum and Sethna [6], Gavin [7]). The main idea is to begin with a relatively large factor λ. If the step
computed by eq. (13) decreases the error, then λ is decreased. Otherwise, λ is increased. In this work, the
damping factor is updated as: {

λk+1 = λk/γ1, if f(xk + dk) < f(xk)

λk+1 = λk γ2, otherwise.
(15)

where λ0, γ1, and γ2 are positive real numbers.

3 Bound-Constrained NLS

Usually, the unknown model parameters (x) have a clear physical meaning and a range of acceptable values.
However, any value of x can be obtained in the solution of the NLS problem provided it minimizes the objective
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function defined in Eq. (1). In many cases, unrealistic parameter values (e.g. negative elastic modulus) lead to
errors in model evaluation causing convergence failure.

Thus, the unconstrained algorithms described previously need to be modified to include the bound constraints
to ensure that the parameters are in the acceptable range. The bound-constrained NLS problem can be written as min

x∈Rn
f(x) =

1

2

m∑
i=1

r2i =
1

2
rT r, n ≤ m

s. t. lj ≤ pj ≤ uj , j = 1, . . . , n

(16)

where lj and uj , are the lower and upper bounds, respectively. The algorithm used to solve this problem is
an adaptation of a projection method for the solution of general optimization problems with bound constraints
(Schwartz and Polak [8]).

The basic idea of projection methods is to identify the set of active variables, corresponding to the variables
that are at their bounds at the solution (Schwartz and Polak [8], Bertsekas [9]). Once identified, these variables are
kept fixed and the optimization algorithm changes only the free variables. One key element of this approach is the
projection operator (P ):

P (xj) =


lj , if xj ≤ lj

xj , if lj < xj < uj

uj , if xj ≥ uj

(17)

The projection operator is applied component-wise and guarantees that the variables (i.e. the model parameters)
are kept within the feasible region (lj ≤ xj ≤ uj , j = 1 to n) at all iterations.

After projection, the set of variables candidate to be active (A) is composed by the ones close or on its bounds:

A(x) =

j = 1, . . . , n

∣∣∣∣∣∣ lj ≤ xj ≤ lj + δ and gj > 0, or

uj − δ ≤ xj ≤ uj and gj < 0

 , (18)

where δ is a parameter defining if the variable is close to its bounds, which is given by

δ = min{ε, ∥w(x)∥}, (19)

where ε > 0 and
w(x) = x− P (x− g) (20)

is the projected gradient, thus w = 0 at the solution. It is important to note that only the variables whose steepest
descent direction (−gj) points to outside the feasible region are included in the active set. This procedure allows
the correct identification of the active set after a finite number of iterations (Schwartz and Polak [8]).

The set of inactive variables (I) is given by:

I(x) = {j = 1, . . . , n | j /∈ A(x)} . (21)

Thus, at each iteration, the set of inactive variables Ik = I(xk) is the complement of the set of active variables
Ak = A(xk).

In order to allow the variables close to bounds to move to the exact bounds, the search direction for active
variables (dA) is the steepest descent direction (Schwartz and Polak [8]):

dA = −gA. (22)

On the other hand, the search direction for inactive variables (dI ) can be evaluated using any method for uncon-
strained NLS problems discussed previously. Furthermore, the modified stopping criteria is given by

NRMSE < tol1 or ∥gI∥ ≤ tol2. (23)

Thus, the gradient norm considers only the inactive variables.
The descent condition used in Gauss-Newton line search is modified to include the bound constraints (Arora

[5], Schwartz and Polak [8]):

f(xk + αl dk) < f(xk) + β
[
αl (g

T
k dk)Ik + (gT

k (xk+1 − xk))Ak

]
. (24)

If the set Ak is empty, the term (gT
k (xk+1 − xk))Ak

vanishes. If the set Ak contains some of the variables that
are on their bounds, then (xk+1 − xk)Ak

= 0 and the foregoing term again vanishes. In both cases, the descent
condition of eq. (24) reduces to eq. (10). In other words, we find the step size to minimize f considering only
the inactive (i.e. free) variables and keeping the active variables fixed at their bounds. Finally, if the variable xj is
close to its bound, the term gj

T
k (xjk+1 − xjk) < 0, which satisfies the descent condition, as for the free variables.

Thus, the step size calculation criterion in eq. (24) allows for the variable to move closer to its bound.
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4 Numerical Example

The algorithms to solve bound-constrained NLS problems were implemented in C++ language. A pavement
backcalculation example is used to show how bound constraints can be useful to guarantee the convergence of the
optimization process to realistic results. Table 1 shows the initial optimization parameters applied in this example.

Table 1. Optimization parameters used in the numerical example.

kmax tol1 tol2 lmax β η λ0 γ1 γ2 ε

200 10−8 10−8 10 10−4 0.5 10−2 10 10 10−2

The Falling Weight Deflectometer (FWD) is a non-destructive testing device that applies a load to a circular
plate in contact with the pavement surface through a falling mass and measures pavement surface deflections at
specified radial distances from the plate center using geophones (Huang [3]). Provided that the pavement geometry
and material properties are known, simulated deflections can be obtained by a finite element model (Barroso et al.
[10]). Thus, the backcalculated properties correspond to the model parameters x that minimize the difference
between the simulated (y) and the measured (ŷ) deflections.

Following the standard backcalculation approach, it is assumed that the thickness (h) and Poisson’s ratio (ν)
of each pavement layer is known and only the modulus of elasticity (E) of each layer needs to be backcalculated:
x = [E1, ..., En]

T . Therefore, the number of pavement layers defines the size of the vector x (n), while the number
of geophones in FWD defines the number of data points (m).

In this example, the pavement has 4 different layers, including the subgrade, and the FWD has 7 geophones.
The pavement structure was obtained from Barroso et al. [10] and it is represented in Fig. 1a. Figure 1b shows the
deflection basin obtained by FEM considering these data.

(a) Pavement structure.

(b) Deflection basin.

Figure 1. Pavement backcalculation problem.

Ten different randomly generated sets of seed moduli (i.e. starting points) were used to test the algorithms.
The range of each seed modulus was determined following the recommendations of the Federal Highway Admin-
istration Research and Technology (FHWA) (Pierce et al. [11]) for each material type. Table 2 shows the modulus
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range of the layers and the seed moduli.

Table 2. Seed moduli set.

Layer Emin

(MPa)
Emax

(MPa)
Elastic seed moduli (MPa)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Surface 750 15000 9315 5808 3099 8466 13741 10992 4052 758 7561 12265
Base 70 7000 143 4304 1953 5397 3870 814 2472 6529 6229 3115
Subbase 50 700 682 238 513 267 171 584 415 355 449 56
Subgrade 34 345 305 101 94 201 318 186 223 46 281 157

The seed moduli were tested for Gauss-Newton and Levenberg-Marquardt methods, totaling 20 backcal-
culation results, as shown in Table 3. Eleven of the twenty tests (55%) obtained the correct moduli: x =
[3243, 381, 90, 189]T MPa, while six tests presented solutions with negative elastic modulus. Other three tests
did not converged in 200 iterations.

Table 3. Backcalculated moduli set.

Layer
Elastic backcalculated moduli (MPa)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Gauss-Newton

Surface 2867 - 3243 27198 3243 3243 3243 94 - 3243
Base 219 - 381 -54051 381 381 381 -3829 - 381
Subbase -5041 - 90 15 90 90 90 630 - 90
Subgrade 132 - 189 506 189 189 189 149 - 189

Levenberg-Marquardt

Surface 3243 3243 218 3243 3243 3243 - 218 218 3243
Base 381 381 2709 381 381 381 - 2709 2709 381
Subbase 90 90 -451 90 90 90 - -451 -451 90
Subgrade 189 189 152 189 189 189 - 152 152 189

On the other hand, considering a lower bound equal to 1 MPa, just to avoid solutions with negative moduli,
all tests obtained the correct solution. This result shows the importance of using bound constraints not only to
ensure physically acceptable solutions but also to increase the robustness of NLS algorithms.

Comparing the efficiency of the methods by the number of function evaluations, Gauss-Newton was more ef-
ficient in all tests, as shown in Table 4. Due to the large performance difference, the parameters used in Levenberg-
Marquardt method were modified to improve its efficiency.

Table 4. Efficiency of NLS methods for Emin = 1 MPa.

Method
LM parameters Number of function evaluations (NFE)
λ0 γ1 γ2 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Gauss-Newton - 22 31 25 50 23 17 18 30 24 22

Levenberg-Marquardt

0.01 10 10 99 123 97 162 240 93 106 171 141 219
1 10 10 100 127 90 160 238 91 104 169 139 217

100 10 10 104 131 99 161 266 104 105 146 134 221
1 9 11 83 95 69 133 206 66 69 156 159 197
1 3 2 58 76 60 76 108 47 73 91 91 97

The initial values of parameters λ0, γ1 and γ2 were chosen equal to 10−2, 10 and 10, respectively, which
are the values proposed by Marquardt [12] and used in the MATLAB implementation of this method (MathWorks
[13]). Testing other values of λ0, it is possible to state that this parameter does not have a significant influence on
the efficiency of this problem, but λ0 = 1 presented the best results.
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On the other hand, keeping λ0 = 1 but changing γ1 and γ2 to 9 and 11 respectively, values recommended by
Gavin [7] and to 3 and 2 respectively, recommended by Madsen et al. [2], Transtrum and Sethna [6], it is possible
to observe a significant improvement in the efficiency of the method. Using γ1 = 9 and γ2 = 11, NFE decreased
by 16% on average, while with γ1 = 3 e γ2 = 2, the decrease was 44% on average (Table 4). Despite this
improvement, the performance of Levenberg-Marquardt remained inferior to the Gauss-Newton method.

5 Conclusion

In this paper, efficient optimization algorithms for NLS problems were implemented and applied to the back-
calculation of the elastic moduli of an asphalt pavement. In the case of classic (i.e. unconstrained) NLS algorithms,
lack of convergence and convergence to unrealistic solutions occurred depending on the starting point (i.e. seed
moduli).

On the other hand, when simple bounds were considered, the correct solution was obtained independent of
the starting point. Therefore, the consideration of bound constraints is important not only to ensure convergence
to physically acceptable solutions but also to increase the robustness of NLS algorithms.

The algorithms’ efficiency was assessed using the number of function evaluations (i.e. finite element anal-
yses) and the Gauss-Newton method was more efficient than the Levenberg-Marquardt method in this example.
However, further research needs to be carried out on generalized this conclusion to other pavement structures.
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