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Abstract. The discovery of naturally fractured reservoirs in the Brazilian pre-salt has attracted considerable 

attention for a better understanding of reservoir characterization and fluid flow inside fracture channels. Predicting 

the hydromechanical behavior of these reservoirs is a cumbersome task, which requires the identification of their 

geomechanical parameters. In this scenario, a soft computing-based methodology is implemented to estimate 

geomechanical parameters from borehole injection pressure in hydraulic fracturing tests. Based on artificial 

intelligence techniques, this approach integrates a proxy model and an optimization algorithm to match the field 

measurements and the borehole pressure curve predicted by a finite element model. Considering a multistep-ahead 

strategy to predict time series, a multilayer perceptron-based proxy model computes the borehole pressure curves, 

substituting the numerical simulation of a minifrac test. The adoption of a proxy model substantially reduces the 

computational effort of the parameter identification task. Therefore, a genetic algorithm can efficiently estimate 

the reservoir geomechanical parameters by solving a nonlinear least squares problem. The application to field-

measured data from a minifrac test confirms the capability of the proposed methodology to estimate geomechanical 

parameters from hydraulic fracturing tests. 
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1  Introduction 

Information about geomechanical properties and in-situ stresses is essential for petroleum engineering in 

conducting several operations, analyses, and estimations. Some techniques have been developed to estimate in-

situ stresses [1–3]. Nonetheless, these methods may require substantial investments to acquire reliable data in 

deepwater applications. In this scenario, various empirical relationships have been proposed to estimate the elastic 

properties, permeability, and porosity of rock formations using well logs [4,5]. However, these estimated 

parameters are only representative near the wellbore [6]. While hydraulic fracturing tests are the most direct means 

to estimate the minimum in-situ stress in the oil and gas industry, they are inaccurate to determine the maximum 

horizontal in-situ stress [7,8]. 

In this context, inverse analysis can be applied to estimate geomechanical parameters in hydraulic fracturing 

tests. Inverse problems arise when observations are available, but the underlying causes are unknown. Inverse 

analysis serves as a powerful tool to identify parameters in mathematical models, replacing the trial-and-error 

process. In a modern approach, stochastic optimization methods are employed to solve inverse problems, 

particularly due to the occurrence of complex topologies in objective functions to be minimized [9]. Therefore, 

several studies utilize optimization methods inspired by natural processes to solve inverse analysis problems. It is 

important to emphasize that these methods do not guarantee obtaining the optimal solution; however, these 

methods often compute solutions satisfactorily close to the global minimum. 

In cases where the mathematical model under study lacks an analytic expression, evaluating the objective 

function during a parameter identification task may be computationally expensive. To overcome this, several 

researchers have employed proxy (surrogate) models of numerical simulations, often utilizing artificial neural 
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networks. Considering hydraulic fracturing simulations, Zhang and Yin [10] and Zhang et al. [11] applied neural 

networks and genetic algorithms to estimate geomechanical parameters based on borehole pressure data. 

Additionally, Zhang and Yin [12] and Zhang et al. [13,14] employed these techniques to compute horizontal 

stresses using information from leak-off tests. Abreu et al. [15,16] introduced approaches for parameter 

identification in hydraulic fracturing tests based on time series recursive predictions. 

Therefore, this study presents a soft computing-based methodology for parameter identification in finite 

element simulations of hydraulic fracturing. This methodology uses artificial intelligence methods to match 

numerical and experimental borehole pressure curves. In this scenario, a genetic algorithm minimizes the 

difference between numerical and experimental data. In addition, a multilayer perceptron is trained to approximate 

the outcomes of numerical models, reducing the computational cost of the optimization problem by decreasing the 

number of required finite element analyses. The presented methodology is heavily based on the proof of concept 

developed by Abreu et al. [15]. The methodology is then applied to identify parameters in a field minifrac test. 

2  Methodology 

For the numerical simulation of minifrac tests, the finite element method is employed, utilizing the Abaqus® 

software. Thus, a proxy model is defined to reduce the computational effort of the parameter identification task. 

According to the definitions presented in this section, this proxy model is built based on machine learning concepts. 

2.1 Artificial neural networks 

In this study, the proxy model is defined using a multilayer perceptron, as shown in the following equation: 

𝒂𝑛+1 = 𝑓𝑛+1(𝑾𝑛+1𝒂𝑛 + 𝒃𝑛+1) (1) 

where 𝒂𝑛+1 and 𝒂𝑛 respectively represent the outputs of the current and previous layers; 𝑓𝑛+1 denotes the activation 

function of the current layer; 𝑾𝑛+1 represents the weight matrix that connects the current and previous layers; and 

𝒃𝑛+1 defines the biases of the current layer. Moreover, 𝒂0 represents the input values of the neural network. In this 

context, the weights and biases are determined using the Levenberg-Marquardt algorithm [17]. Additionally, the 

weights are initialized according to the strategy proposed by Glorot and Bengio [18]. 

2.2 Multistep-ahead prediction 

Predicting time series, such as the borehole pressure curves studied in this work, can be a cumbersome task 

due to the accumulation of errors, increased uncertainty, and deteriorating accuracy [19]. Nevertheless, various 

approaches, particularly the recursive strategy, have been successfully adopted in diverse time series applications 

[19]. When training a machine learning model using the recursive strategy, the one-step-ahead prediction is used: 

𝑦̂𝑡+1 = 𝑓(𝑦𝑡 , 𝑦𝑡−1, … , 𝑦𝑡−ℎ+1, 𝑥1, 𝑥2, … , 𝑥𝑚) (2) 

in which 𝑦̂ is a predicted value, 𝑓 is the machine learning model, 𝑦 is a known value from the series, 𝑡 is the time 

step, ℎ is the moving window size, 𝑥𝑘 is an exogenous variable, and 𝑚 is the number of exogenous variables. In 

this study, the exogenous variables are the geomechanical parameters and a variable that regulates the injection 

flow. Once the model 𝑓 is established, the next value 𝑦̂𝑡+2 is predicted according to Equation (3). 

𝑦̂𝑡+2 = 𝑓(𝑦̂𝑡+1, 𝑦𝑡 , … , 𝑦𝑡−ℎ+2, 𝑥1, 𝑥2, … , 𝑥𝑚) (3) 

Therefore, the values 𝑦̂𝑡+3, 𝑦̂𝑡+4, … , 𝑦̂𝑡+𝑛 are predicted utilizing the same idea presented in Equation (3). In 

this work, the initial values 𝑦𝑡  to 𝑦𝑡−ℎ+1 are defined based on the initial pore pressure 𝑝𝑜. During the training of 

𝑓, all pressure data are normalized respecting the same interval. 

2.3 Genetic algorithm 

A genetic algorithm computationally represents the biological evolution, simulating the Darwinian natural 

selection mechanisms. This algorithm is extensively applied in the solution of global optimization problems. This 
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work adopts the real-coded genetic algorithm implemented by Abreu et al. [15] to identify the geomechanical 

parameters. The applied algorithm solves the following optimization problem: 

𝑚𝑖𝑛
𝒙∈𝜴

𝐹(𝒙) (4) 

in which 𝐹(𝒙) denotes the objective function, 𝒙 denotes the vector of continuous components, and 𝜴 denotes the 

problem domain. To characterize the parameter identification problem, 𝐹(𝒙) is defined in Section 2.4. As this 

algorithm is population-based, the global minimum is the individual with the lowest objective function. 

2.4 Inverse analysis procedure 

Estimating parameters of mathematical models based on a set of observations is an inverse problem. 

Optimization methods are often used to solve such problems. This approach aims to minimize an objective 

function, which directly depends on observed and predicted data. Once the optimization problem (4) is defined, 

the objective function is specified based on the nonlinear least squares, as shown in Equation (5). 

𝐹(𝒙) = 𝒓(𝒙)𝑇𝒓(𝒙)  (5) 

with 

𝒓(𝒙) = 𝒚𝑜𝑏𝑠 − 𝒚𝑝𝑟𝑒𝑑(𝒙)  (6) 

considering that 𝒙 is a set of parameters to be estimated, 𝒚𝑜𝑏𝑠 is of the observed data, and 𝒚𝑝𝑟𝑒𝑑  is of the predicted 

data (outputs of a mathematical model). In the presented methodology, the model output 𝒚𝑝𝑟𝑒𝑑(𝒙) is calculated 

by applying an approximation of the objective function. Consequently, the objective function directly relies on a 

machine learning model that has been previously developed to replace a numerical simulator. Figure 1 presents a 

flowchart of the soft computing-based inverse analysis procedure. 

 

Figure 1. Flowchart of the adopted inverse analysis procedure 
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3  Application 

A parameter identification study for a minifrac test was conducted based on the described methodology. The 

primary aim is to estimate certain properties of the fractured medium and the injected fluid. To accomplish this, 

field data are utilized. The minifrac test was carried out in a vertical well of a carbonate reservoir situated in Santos 

Basin (Brazil). The finite element model of this test is illustrated in Figure 2. Further details about the finite element 

model and formulation can be found in the works of Abreu et al. [15,16] and Rueda et al. [20]. 

 

Figure 2. Geometry, finite element mesh, and boundary conditions of the minifrac test 

The proxy model for the problem was built from various numerical simulations. The Latin hypercube 

sampling method was employed to generate 1000 sample points (approximately 307 hours of execution time) 

consisting of the geomechanical parameters investigated in this inverse problem: Young’s modulus 𝐸, rock tensile 

strength 𝜎𝑡, minimum horizontal stress 𝑆ℎ, ratio of horizontal stresses 𝐾 = 𝑆𝐻 𝑆ℎ ⁄ , rock permeability 𝑘, and 

dynamic fluid viscosity 𝑢𝑓. Table 1 shows the upper and lower bounds adopted for the sampling process. The 

generated dataset comprises equally spaced data points for time intervals of 30 seconds. For simplification reasons, 

the time simulation was limited to 1200 seconds, despite the experimental test extending over a longer period. 

Table 1. Upper and lower bounds for sampling and optimization procedures 

Parameter Upper bound Lower bound 

Young’s modulus 𝐸 (GPa) 40 10 

Rock tensile strength 𝜎𝑡 (MPa) 5 0.5 

Minimum horizontal stress 𝑆ℎ (MPa) 81.5 56.5 

Ratio of horizontal stresses 𝐾 1.2 1 

Rock permeability 𝑘 (md) 500 5 

Dynamic fluid viscosity 𝜇 (cp) 1000 500 

Exhaustive search is employed to evaluate certain predefined sets of hyperparameters of neural networks, 

namely the number of neurons and hidden layers. Subsequently, the set presenting the best validation performance 

determines the final model. This study adopts a 10-fold cross-validation process to quantify the performance for 

each set of hyperparameters. The performance evaluation utilizes the Root Mean Squared Error (RMSE) metric. 

Moreover, the error calculated through multistep-ahead prediction is utilized in performance calculations since the 

final application considers this type of prediction. 

Injection
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𝑝𝑜 = 51.5 MPa

Thickness: 5 m
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Once the optimal set of hyperparameters is determined, the final model is built. This involves training the 

same model multiple times and selecting the one with the lowest validation error. To mitigate overfitting, models 

displaying significant disparities among training, validation, and test errors are excluded. Importantly, the neural 

network modeling was developed using the MATLAB® platform. 

Initially, multilayer perceptrons were modeled using 70%, 15%, and 15% of all collected data for the training, 

validation, and test datasets, respectively. Figure 3 presents the mean and best model performances (multistep-

ahead prediction) for the predetermined number of neurons and hidden layers employed in the search. The number 

of neurons and hidden layers investigated in the exhaustive search is listed in Table 2. In the adopted notation, 10-

20-20-1 indicates a model with ten and one neurons in the input and output layers, respectively, and two hidden 

layers with twenty neurons each. It should be noted that the RMSE was calculated using normalized outputs. As 

indicated in the graph, the best set of hyperparameters was selected based on the average validation error. 

 

Figure 3. Multilayer perceptron performance computed for the exhaustive search 

Table 2. Investigated neural networks structures 

Number of 

hidden layers 
Number of neurons in each layer 

1 10-10-1, 10-15-1, 10-20-1, 10-25-1, 10-30-1, 10-35-1, and 10-40-1 

2 
10-10-10-1, 10-15-10-1, 10-20-10-1, 10-20-15-1, 10-20-20-1, 10-25-20-1, 

10-30-20-1, 10-30-25-1, and 10-30-30-1 

Considering the chosen number of neurons and hidden layers determined for the exhaustive search, the final 

proxy model is trained. This model was employed to predict the borehole pressure curves of 150 simulations from 

the test dataset. Therefore, the multistep-ahead prediction was applied to compute the results depicted in Figure 4, 

which presents a linear regression between the normalized predicted data and the normalized observed ones. 

Furthermore, the Pearson correlation coefficient R is provided. It is evident that the predicted and observed data 

exhibit a strong correlation. Consequently, the final model shows a good performance, being appropriate to the 

parameter identification task. 
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Figure 4. Correlation between the observed and predicted test dataset considering multistep-ahead predictions 

Using the genetic algorithm, the aforementioned geomechanical parameters are estimated via inverse 

analysis. The domain 𝜴 of the optimization problem is defined by the intervals specified in Table 1. Due to the 

stochastic nature of the genetic algorithm, it is considered a best practice to execute it multiple times, as this may 

yield various solutions to be assessed. Nevertheless, the multiple executions of the genetic algorithm consistently 

yielded the following estimations of the geomechanical parameters: 𝐸 = 10 GPa, 𝜎𝑡 = 0.5 MPa, 𝑆ℎ = 60.69 MPa, 

𝐾 = 1.20, 𝑘 = 133.56 md, and 𝑢𝑓 = 500 cp. In terms of performance, Figure 5 illustrates the average and best 

values of the objective function computed throughout the optimization procedure. Note that the algorithm required 

approximately 20 generations to reach the vicinity of the optimal solution and 45 generations to achieve 

convergence. It is worth mentioning that the number of evaluations of the objective function during the 

optimization process (8100 evaluations) is greater than the number of numerical models used to construct the 

neural network. This suggests that approximately eight times the number of numerical simulations would be 

necessary to identify the geomechanical parameters without using the multilayer perceptron-based proxy model. 

Moreover, given the importance of executing the optimization algorithm multiple times, proxy modeling becomes 

a worthy tool to reduce the computational effort involved in the parameter identification tasks. 

 

Figure 5. Average and best objective function values computed during the optimization process 

Finally, Figure 6 illustrates the borehole pressure curve obtained through the parameter identification process. 

The results of the numerical simulation and the neural network, utilizing the aforementioned parameter set, are 

compared with the field-measured borehole pressure data. It is worth emphasizing that the neural network 

accurately predicts the numerical response, including the abrupt pressure change resulting from the interruption of 

fluid injection. 
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Figure 6. Comparison between experimental data, numerical simulation, and neural network prediction 

4  Conclusions 

To identify geomechanical parameters from a minifrac test, a methodology combining artificial intelligence 

techniques was applied. This soft computing-based approach performed the parameter identification process of a 

hydraulic fracturing problem under a feasible computational cost. A multilayer perceptron was trained as a proxy 

model, generating an approximate objective function to be minimized through a genetic algorithm. The 

hyperparameters of the multilayer perceptron were successfully computed by exhaustive search. Remarkably, the 

proxy model could satisfactorily represent the numerical simulation outcomes, as evidenced by the strong 

correlation between observed and predicted data. As a consequence of the adopted methodology, a reduced number 

of finite element analyses were required to solve the parameter identification problem. 

Notably, the current proxy model was trained under specific conditions related to the present minifrac test, 

such as flow rate and injection time. Therefore, the model is tailored to this particular application and may not be 

directly transferable to different scenarios or conditions. Nonetheless, this study emphasizes the potential of 

integrating machine learning models and genetic algorithms to provide a powerful and efficient strategy to estimate 

geomechanical parameters. Future research should continue to explore the boundaries and applicability of this 

approach in a wider spectrum of geomechanical settings. 
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