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Abstract. The lithofacies classification provides valuable information about the geological history and the 

depositional environment. For multiclass classification tasks, as is usually the case with lithofacies classification, 

there are two basic approaches for building the models: the One-vs-One (OvO) and the One-vs-All (OvA) 

approaches. In general, when building models, default settings are typically employed, without conducting a 

detailed study to determine the most suitable approach for each scenario. In this study, we evaluated the 

performance of the OvA and OvO in the lithofacies classification task. The results indicate that the OvA model 

has lower computational cost and consistently outperforms the OvO model across almost cross-validation folds. 

Results on test data indicate that OvA can be a good alternative in scenarios with imbalanced classes or when 

there is a limited amount of data for training and testing. The OvO model can be an interesting alternative when 

the imbalance between classes is an important factor for the problem. 
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1  Introduction 

Lithofacies classification plays a crucial role in understanding the geology and depositional environment 

within sedimentary formations, providing valuable insights for constructing computational models in oil 

reservoirs [1][2][3]. In recent years, the application of machine learning models for this task has garnered 

significant attention [4][5][6]. However, this task presents several challenges due to limited labeled data, 

complex relationships between input variables and lithofacies, scale dependence, heterogeneity of the porous 

medium, and the number of labels to classify [7][8]. 

For multiclass problems, such as lithofacies classification, two fundamental approaches are commonly 

employed: the One-vs-One (OvO) [9] approach, where binary classifiers are trained for each pair of classes and 

directly compared, and the One-vs-All (OvA) [10] or One-vs-Rest (OvR) approach, where binary classifiers are 

trained for each class against all other classes. Despite the widespread use of open-source libraries for model 

construction, the selection of the classification strategy is often overlooked, with default configurations being 

applied without considering their impact on the model's performance for different types of applications. 

To explore this question, this study was conducted with the aim of evaluating the performance of the OvA 

and OvO approaches in lithofacies classification. The Geophysical Tutorial Machine Learning Contest 2016 

dataset [11][12] was employed for this purpose. We chose XGBoost as the base model, with two versions 

configured: one using the OvO approach and the other using the OvA approach. Hyperparameter optimization 

was performed using the Optuna library, with F1-score as the optimization metric. 

The study aimed to provide insights into the performance of the OvA and OvO approaches in lithofacies 

classification using machine learning models and contribute to the optimization of classification strategies for 

building more accurate computational models in oil reservoir exploration. 
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2  Methodology 

2.1 Data source and preprocessing 

The dataset comprises measurements from 10 wells, including Gamma ray (GR), Resistivity logging 

(ILD_log10), Photoelectric effect (PE), Neutron-density porosity difference (DeltaPHI), Average neutron-

density porosity (PHIND), Nonmarine/marine indicator (NM_M), and relative position (RELPOS). Prior to 

analysis, the dataset was preprocessed to handle missing values, normalize features, and ensure data consistency. 

The nine lithofacies present in the database, along with their respective codes, are shown in Tab. 1. 

Table 1: Lithofacies present in the database. 

Lithofacie Código 

Nonmarine sandstone SS 

Nonmarine coarse siltstone CSiS 

Nonmarine fine siltstone FSiS 

Marine siltstone and shale SiSh 

Mudstone (limestone) MS 

Wackestone (limestone) WS 

Dolomite D 

Packstone-grainstone (limestone) PS 

Phylloid-algal bafflestone (limestone) BS 

2.2 Model selection and configuration 

XGBoost [13], a popular machine learning algorithm, renowned for its effectiveness in handling complex 

classification tasks, was selected as the foundational model for this study. Two versions of the model were 

configured: one based in the OvO approach and the other using the OvA approach. The construction of these 

approaches can be summarized as follows: 

● OvA: a binary classifier is trained for each class in the problem. In other words, the model trains one 

class against all other classes combined. To classify a new instance, the OvA model compares the 

outputs of all the classifiers and assigns the instance to the class that has the highest confidence score. 

● OvO: a binary classifier is trained for each pair of classes. If there are N classes, the number of required 

binary classifiers is N*(N-1)/2. Once again, to classify a new instance, the OvO classifiers vote, and the 

class with the most votes is assigned to the instance. 

2.3 Hyperparameter tuning 

The hyperparameters tuning was performed using Optuna library [14]. Optuna uses a Sequential Model-

Based Optimization (SMBO) strategy to efficiently search the hyperparameter space. One hundred trials were 

conducted, and the F1-score was selected as the optimization metric to strike a balance between Precision and 

Recall. 

2.4 Performance evaluation 

Following the competition guidelines, nine wells (Alexander D, Shankle, Luke G U, Kimzey A, Cross H 

Cattle, Nolan, Recruit F9, Newby, Churchman Bible) were used for training, while one well (Shrimplin) served 

as the test set. Performance evaluation of the models involved two distinct phases. First, a 5-fold cross-validation 

was conducted using the training set to assess the models' performance on different subsets of data. Metrics such 

as accuracy, precision, recall, and F1-score were calculated for each fold. Second, a blind test on the complete 

well was carried out to evaluate the models' performance on new data. The confusion matrix was utilized to 

assess the classification results of the blind test. 
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3  Results and discussion 

3.1 Cross-validation results 

Table 2 presents the hyperparameter tuning times in hours and cross-validation times in minutes. 

Table 2. Hyperparameter tuning and cross-validation times for the OvA and OvO models. 

Model Tuning (h) Cross-validation (min) 

OvA 2,1 3.3 

OvO 3,8  4.0  

 

The OvO model has a computational cost that is approximately 81% higher for hyperparameter tuning and 

around 21% higher for cross-validation, when compared to the OvA model. These differences stem from the 

distinct computational complexities of the models. In this problem, we have 9 classes, which means the OvA 

model requires only 9 classifiers (one for each class). On the other hand, OvO necessitates a total of 36 binary 

classifiers. This disparity makes both training and inference for the OvO model more resource-intensive 

compared to the OvA model.  

 Figure 1 illustrates the comparison of accuracy, precision, recall, and f1_score scores for the OvA and 

OvO models across each fold of cross-validation. 

 

 

It can be noted that the OvA model consistently outperforms the OvO model in most of the cross-validation 

folds. This performance difference can be attributed to the impact of class imbalance during model construction: 

due to its construction characteristics, the OvO model tends to face greater challenges with problems where there 

is an imbalance between classes, as is the case in the problem addressed in this study. This is because the number 

of samples in each class determines the amount of training data for the model, leading to inadequate learning for 

rare classes. This is not the case in the OvA model construction, where each binary classifier focuses solely on 

one class versus all others. The presence of significant overlap between classes could be another explanatory 

factor for the results shown in Fig. 1. In such cases, the OvA model may be more effective, as each classifier is 

trained to distinguish a specific class from the rest. 

As cross-validation assesses model performance across multiple subsets of data, ensuring that evaluation is 

unbiased due to a specific train-test split. The consistent superior performance of the OvA model across most 

folds indicates a more robust and stable performance compared to the OvO model. This suggests that the OvA 

model is better suited for this specific dataset and classification task, making its selection as the applied model 

for problem-solving reasonable. 

Figure 1: Accuracy, precision, recall, and F1-score results for each of the 5 cross-validation folds. 
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3.2 Results on test data 

The performance results of the models in classifying the Shrimplin well are presented in Tab. 3 and Fig. 2. 

The summary of evaluation metrics for both models for each lithofacies is provided in Tab. 3, while the 

distribution of actual and predicted classes in the confusion matrix is depicted in Fig. 2. 

Table 3: Results of Precision, Recall, and F1-score for the classification of all lithofacies by both models in the 

Shrimplin well. 

Lithofacie 
Precision     Recall   F1-score    

Support 
OvA OvO OvA OvO OvA OvO 

SS  0.00       0.00       1.00       1.00       0.00          0.00          0 

CSiS 0.63       0.67       0.70       0.75       0.66        0.70        118 

FSiS 0.70       0.74       0.59       0.61       0.64        0.67        123 

SiSh 0.57       0.42       0.72       0.56       0.63         0.48         18 

MS 0.58       0.64       0.11       0.22       0.19         0.33         63 

WS 0.50       0.53       0.81       0.83       0.62         0.65         63 

D 0.50 0.00       0.40       0.00       0.44          0.00       5 

PS 0.67       0.59       0.58       0.49       0.62         0.54         69 

BS 0.40       0.39       1.00       1.00       0.57         0.56         12 

 

The first point to note is that both models classified the SS class, even though it is not present in the 

Shrimplin well. When cross-referencing this information with Fig. 2, it can be observed that both models classify 

the CSiS class as SS, with 4 errors made by the OvA model and 3 by the OvO model. This suggests overfitting 

during the training phase for this class, most likely due to overlap between them. 

For the CSiS lithofacies, the OvA model achieved a precision of 0.63 and a recall of 0.70, resulting in an 

F1-score of 0.66. Similar F1-score values are observed in the FSiS, SiSh, WS, and PS classes. The lowest F1-

score (0.19) was obtained in the MS class. The overall accuracy of the model was 0.60. The macro averages for 

precision, recall, and F1-score were 0.51, 0.66, and 0.49, respectively. The weighted averages for the same 

metrics were 0.62, 0.60, and 0.58. 

The OvO model achieved a precision of 0.67 and a recall of 0.75 for the CSiS lithofacies, resulting in an 

F1-score of 0.70, which is a superior performance compared to OvA. The same pattern holds for the FSiS, MS, 

and WS classes, with F1-scores of 0.67, 0.33, and 0.65, respectively. However, the OvO model's performance 

was inferior to OvA in the SiSh, D, PS, and BS classes. The overall accuracy of the OvO model was 0.61. The 

macro averages for precision, recall, and F1-score were 0.44, 0.61, and 0.44, respectively. The weighted 

averages were 0.63, 0.61, and 0.59. 

 

 

The summary of model performance can be conducted through a comparison of macro and weighted 

averages. The results of the macro averages show that the OvA model performs better overall across all classes, 

without considering the class imbalance. In other words, when each class is considered equally important, 

Figure 2: Confusion matrix of both models in Shrimplin well. 
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regardless of its instance count. Thus, if the goal is to ensure that the model performs well for each class 

independently, the OvA model is indeed the more suitable choice. 

The models exhibit similar performance when analyzing the weighted averages. In this case, the class 

imbalance is taken into account, weighing the performance of each class by the number of instances it has (the 

model gives more weight to classes with higher support).   

4  Conclusions 

The OvA model demonstrated better computational efficiency for hyperparameter tuning and training. This 

makes it suitable for problems where computational resources or available time are critical factors. Additionally, 

OvA can be a good alternative in scenarios with imbalanced classes or when there is a limited amount of training 

and testing data. On the other hand, the OvO model can be an interesting choice when class imbalance is a 

crucial factor for the problem. 

These findings underscore the critical importance of carefully analyzing the choice of classification strategy 

when building models to optimize their performance. 
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