
   
 

CILAMCE-2023 

Proceedings of the XLIV Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC  
Porto – Portugal, 13-16 November, 2023 

Spectral Method and Machine Learning approach to Wind Turbine 

damage detection 

Maciej Dutkiewicz1, Marcela R. Machado1,2, Jefferson da Silva Coelho1,2 

 
1Faculty of Civil, Architecture and Environmental Engineering and Architecture, Bydgoszcz University of Science 

and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland 

macdut@pbs.edu.pl 

 2Department of Mechanical Engineering, University of Brasilia, Brasil, 70910-900, Brazil 

Abstract. Wind energy is one of the cleanest energy source currently used in the world, an energy source that 

interferes least with the environment. It is important to locate Wind Farms (WF) in such a way as not to limit the 

living space and not to reduce the comfort of people in the area. Due to the intensity of the wind and minimal 

human impact, offshore farms seem to be the required solution. Another aspect important from the point of 

operational reliability, is ensuring continuous working conditions due to the design and material solutions. Wind 

Turbine (WT) structures are exposed to the dynamic action of wind and waves from the sea, as well as to the 

corrosive environment, causing accelerated damage to WT. The action ensuring safe use of structural elements of 

WT is monitoring the technical condition of the structure based on the analysis of frequency response functions 

(FRF). At the design, as well the operational stage, it is important to predict the failure of the element. The paper 

presents the simulation results of the monitoring and prediction of damage of IEA 15-Megawatt offshore wind 

turbine  using the analysis of changes in resonant frequencies in the FRF and the Machine Learning technique. 

Keywords: Wind Turbine,  Spectral Method,  Machine Learning, Frequency Response Functions 

1  Introduction 

For several years, we have been observing a dynamic increase in the number of installations of devices producing 

energy from wind: onshore and offshore wind energy sector.  

In 2020, 6% of the world’s electricity production was provided by wind power. 15 % of electricity was produced 

in Europe with use of the wind [1]. 

Table 1. Wind capacity by region, unit GW, NAM – North America, LAM – Latin America, EUR – Europe, 

CHN – China, based on [32] 

 2020 2030 2050 

Region Onshore Fixed 

offhore 

Floating 

offshore 

Onshore Fixed 

offhore 

Floating 

offshore 

Onshore Fixed 

offhore 

Floating 

offshore 

NAM 136 0.04 0 271 29 2 691 150 31 

LAM 33 0 0 98 29 0 334 120 7 

EUR 183 25 0.06 289 118 8 505 379 60 

CHN 280 10 0 801 120 2 2072 582 99 

World 708 35 0.07 1733 385 14 4841 1703 300 

 

The European Commission expects that offshore wind energy will be of increasing importance in the future, as 

offshore wind is part of its Green Deal, as general policy accordingly that energy, transport and taxation policies 

fit for reducing net greenhouse gas emissions by at least 55% by 2030, comparing to 1990 [2]. 

Onshore water areas such as lakes, fjords and sheltered coastal areas as well as deeper-water areas are considered 

as offshore wind power. Compared to the onshore, offshore wind farms are characterized by higher turbine 

efficiency, related to greater stability and strength of the wind blowing in the sea areas. On the sea, offshore 

turbines are much larger and more effective. There are higher wind speeds offshore than on land. Taking the 

capacity installed, the offshore farms generate more electricity. The offshore farms have less impact on people and 
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the landscape. Fixed-foundation wind turbines in relatively shallow water are used in most cases of offshore wind 

farms. Nowadays the floating wind turbines for deeper water are developed. 

In 2022 total worldwide offshore wind power capacity is 64.3 GW [3], where China has 49% of the capacity, the 

United Kingdom 22%) and Germany 13%. One of the world's largest offshore wind farm is 1.2 GW Hornsea 

Project One in the United Kingdom [4]. Vindeby Offshore Wind Farm was the first offshore wind farm in the 

world being installed in Denmark in 1991[5]. In 2017, the Vindeby Offshore Wind Farm was taken down. The 

components were recycled into new use, particularly metals and concrete [6]. By 2050, the expectation is that the 

installed offshore wind power capacity will reach 1550 GW on a worldwide scale [1]. 

Due to the importance of the above arguments regarding clean energy sources, there is a real need for further 

development of the electricity wind power sector, which is environment friendly. Further research into the 

recycling and reuse of materials from decommissioned wind turbines is essential. It is also important to extend the 

operation of wind farms, which operate reliably and supply electricity for many years. Numerical models that 

allow for forecasting the work of structures, monitoring and classification of technical condition are part of this 

research direction. Adewuyi et al. [7] presents the vibration-based damage identification methods using 

displacement and distributed strain measurements. The authors state that long-gage distributed strain 

measurements are efficient for the reliable civil structural health monitoring. In [8] the modal shape identification 

of large structure by operational modal analysis technique is presented. The article [9] provides a summary of 

modal testing and structural model validation of wind turbine blades. The theory and practice of the modal testing, 

theoretical basis, measurement techniques, models are studied in the [10]. Based on the vibration features, the 

damage identification methods are classified into four major categories [11]. A.K.Pandey and M.Biswas [12] 

presents the flexibility difference method for locating damage in structures. They emphasize that damage diagnosis 

can be divided into three sub-problems: damage detection, i.e. determining the presence of damage, damage 

location, i.e. determining the location of damage, damage quantification, i.e. determining the amount of damage. 

Interesting methods of damage detection are presented in [13-15]. There has been a lot of works on the analysis of 

the frequency response functions (FRFs) as a source of information on the state of the structure based on SEM. 

The methodology is described in [16-22]. Machine Learning (ML) is the tool which support the structural health 

monitoring (SHM) in the scope of qualification of elements as damage or non-damage. In particular ML is useful 

in the prediction of the structural state of analyzed systems. In the last period the ML is observed as the useful 

tools which is used in many industrial sectors as the algorithms of ML can be applied in wide scope of engineering 

[23].   

2  Spectral Element Model and Support Vector Machine technique 

The dynamic analysis of the one-sided fixed composite-cement beam was carried out by SEM. The influence of 

the height of the crack on the resonance frequency was investigated. For each frequency the damage index (DI) 

was calculated with the refence to mean value of the natural frequency. The Support Vector Machine (SVM) 

algorithm was used to train the system to qualify the beam as damage or health. 80% of data was used for training 

and 20% for testing. 

2.1 Spectral Element Model  

Considering a simplified model, the governing differential equation for the un-damped Euler-Bernoulli for free 

vibration can be written as [22]: 

 

 

𝐸𝐼
𝜕4𝑣(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
= 0 

 

 
(1) 

 

where 𝜌𝐴 is mass per unit length, 𝐸𝐼 the uniform bending rigidity and 𝑣(𝑥, 𝑡) is the beam displacement as a 

function of the position 𝑥 and time 𝑡. By considering a constant coefficient, a displacement solution can be assumed 

in the form: 

𝑣(𝑥, 𝑡) = 𝑣0𝑒−𝑖(𝑘𝑥−𝜔𝑡) (2) 
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where 𝑣0 is a amplitude, 𝜔 is the frequency and 𝑘 is the wave number. 

 

The dynamic stiffness matrix for the spectral beam element under axial tension can be determined as: 

 

𝑺(𝜔) = 𝑲(𝜔) − 𝜔2𝑴(𝜔) (3) 

 

By solving the integral, the dynamic stiffness matrix is: 

 

𝑺(𝜔) =
EI

∆
[

𝑠11       
𝑠21           
𝑠31           

𝑠41           

𝑠12       
𝑠22       
𝑠32       
𝑠42        

𝑠13       
𝑠23         
𝑠33         

𝑠42        

𝑠14
𝑠24
𝑠34

𝑠44

] 

 

 

 

(4) 

 

where ∆= 𝑐𝑜𝑠(𝑘 𝐿)𝑐𝑜𝑠ℎ(𝑘 𝐿) − 1 and the components of element matrix (Eq.4) are given as: 

 
 𝑠11 = −𝑘3(𝑐𝑜𝑠(𝑘𝐿)𝑠𝑖𝑛ℎ (𝑘𝐿) + 𝑠𝑖𝑛(𝑘𝐿)𝑐𝑜𝑠ℎ(𝑘𝐿)), 

 

𝑠12 = −𝑘2𝑠𝑖𝑛 (𝑘𝐿)𝑠𝑖𝑛ℎ (𝑘𝐿),  

 

 

 

 

(5) 

 𝑠13 = 𝑘3 (𝑠𝑖𝑛 (𝑘𝐿) + 𝑠𝑖𝑛ℎ (𝑘𝐿)), 𝑠14 = 𝑘2 (𝑐𝑜𝑠(𝑘𝐿) − 𝑐𝑜𝑠ℎ(𝑘𝐿)), 

 

 𝑠22 = 𝑘(𝑐𝑜𝑠(𝑘𝐿)𝑠𝑖𝑛ℎ(𝑘𝐿) − 𝑠𝑖𝑛(𝑘𝐿) 𝑐𝑜𝑠ℎ(𝑘𝐿)), 

 

𝑠23 = 𝑘2(𝑐𝑜𝑠ℎ(𝑘𝐿) − 𝑐𝑜𝑠(𝑘𝐿)), 

 

 𝑠24 = 𝑘(𝑠𝑖𝑛 (𝑘𝐿) − 𝑠𝑖𝑛ℎ(𝑘𝐿), 

 

𝑠33 = −𝑘3(𝑐𝑜𝑠(𝑘𝐿)𝑠𝑖𝑛ℎ(𝑘𝐿) + 𝑠𝑖𝑛(𝑘𝐿)𝑐𝑜𝑠ℎ(𝑘𝐿)), 

 𝑠34 = 𝑘2 𝑠𝑖𝑛(𝑘𝐿) 𝑠𝑖𝑛ℎ(𝑘𝐿), 𝑠44 = 𝑘(𝑐𝑜𝑠(𝑘𝐿)𝑠𝑖𝑛ℎ(𝑘𝐿) − 𝑠𝑖𝑛(𝑘𝐿)𝑐𝑜𝑠ℎ(𝑘𝐿)). 

 

The spectral model of wind turbine a spectral beam element with a lumped mass representing the tower and the 

rotor-nacelle, respectively [24]. For the model considering a continuous tower only a spectral element is assumed, 

and for the tapered case, the tower is meshed into  beam spectral elements, where each beam element has a 

reduction in the cross-section area from element one up to the top. The equation of motion that represents the wind 

turbine is: 

 

𝐸𝐼
𝜕4𝑣(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
+ 𝑚𝑛𝑎𝑐

𝜕2𝑣(𝑥 = 𝐿, 𝑡)

𝜕𝑡2
= 0 

 

 
(1) 

The above equation with the spectral representation has the form: 

 

𝐸𝐼
𝑑4𝑣̂

𝜕𝑥4
+ 𝜔2(𝜌𝐴 + 𝑚̃𝑛𝑎𝑐)𝑣̂ = 0 

 

 
(1) 

 

where 𝑚̃𝑛𝑎𝑐 =  𝑚𝑛𝑎𝑐  𝐸𝐼𝛽3.  

 

WT spectral matrix for beam spectral element and a lumped mass has the following form 

 

𝑺(𝜔) =
EI

∆
[

𝑠11         
𝑠21             
𝑠31             

𝑠41             

𝑠12     
𝑠22     
𝑠32        

𝑠42        

𝑠13
𝑠23

𝑠33 + 𝑠𝑚𝑛𝑎𝑐

𝑠43  

𝑠14
𝑠24

      
𝑠34        

𝑠44 + 𝑠𝑚𝑛𝑎𝑐

] 

 

 

 

(4) 

 

𝑠𝑚𝑛𝑎𝑐 =  −𝜔2𝑚̃𝑛𝑎𝑐. 

2.2 Machine Learning and Support Vector Machine  Technique 

Machine Learning (ML) is part of Artificial Intelligence (AI) [23]. ML is the learning through experience and 

based on the measured data. Part of ML is Deep Learning (DL), i.e. algorithms that allow to filter the data. In ML 
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we can distinguish: super-vised, unsupervised and reinforcement learning. Supervised Learning includes 

classification and regression. The classification includes: Support Vector Machines (SVM), Naïve Bayes Classifier 

(NBC), Decision Trees (DT), Random Forest (RF) and K – Nearest Neighbors (K-NN). In the SVM algorithm, 

the line that separates the data must be in the optimal place. The distances between the line and the nearest set 

points should be as small as possible. These distances are the Support Vectors. SVM idea is presented in Fig.1 

where s1 and s2 mean the analyzed plane. 

 

Figure 1. SVM for two dimensional training set 

The advantages of SVM are finding the optimal distances (margins) between groups of points, it is a 

computationally efficient method - the complexity increases only linearly with the number of dimensions, it solves 

both linear and non-linear problems. 

3  Numerical analysis and results 

The turbine chosen for the study is IEA 15MW offshore wind turbine (OWT) which corresponds to IEC  Class 

1B. The turbine has a horizontal axis with an upwind orientation. The turbine is equipped with a rotor with three 

blades. The geometry of IEA 15MW OWT is presented in Fig.2 [25].  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Geometry of IEA 15 MW OWT, from the sea level: hub height HH = 150 m, rotor diameter RD = 240 

m, tip clearance TC = 30 m, tip height TH = 270 m 

The mass of the rotor-nacelle assembly has 1446 tons, a tower height of 150 m, an average tower diameter of 10 

m, a tower wall thickness of 0.05 m, Young’s modulus of 210 GPa, and a density of 7850 kg/m3. The OWT model 

is considered as continuous diameter beam with a lumped mass. It assumed a fixed base neglecting the soil-
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structure interaction. In the SEM model 2 elements were assume. A dynamic analysis was made with application 

of two dimensional spectral element model. The model was excited by a unitary force, and the translational and 

rotational responses were estimated at the top of the tower. In the numerical analysis the influence of wind turbine 

tower wall thickness was researched. Change of wall thickness simulates the real condition of corrosion reducing 

the wall thickness of wind turbine tower. The optimal geometry parameters of tower is marked as health state and 

presented in Tab.2. 

Table 2. Parameters of health OWT 

Segment 

 

 

Item 

1 2 3 4 5 6 7 8 9 10 11 

Diameter 10,00 9,99 9,89 9,50 9,07 8,7337 8,48 8,25 8,08 7,51 6,71 

Wall 

thickness 

0,0492 0,0458 0,0430 0,0413 0,0394 0,0368 0,0335 0,0298 0,0262 0,0306 0,0306 

 

The wall thickness reduction is marked as damage state, as case 1 to 5, and is presented in Tab.3.  

Table 3. Parameters of damaged OWT 

Segment 

 

 

Damage 

1 2 3 4 5 6 7 8 9 10 11 12 13 

damage 
1 

0,0328 0,0305 0,0287 0,0275 0,0263 0,0245 0,0223 0,0199 0,0175 0,0204 0,0204 0,0328 0,0305 

damage 
2 

0,0246 0,0229 0,0215 0,0206 0,0197 0,0184 0,0167 0,0149 0,0131 0,0153 0,0153 0,0246 0,0229 

damage 
3 

0,0197 0,0183 0,0172 0,0165 0,0158 0,0147 0,0134 0,0119 0,0105 0,0123 0,0123 0,0197 0,0183 

damage 
4 

0,0164 0,0153 0,0143 0,0138 0,0131 0,0123 0,0112 0,0099 0,0087 0,0102 0,0102 0,0164 0,0153 

damage 
5 

0,0141 0,0131 0,0123 0,0118 0,0113 0,0105 0,0096 0,0085 0,0075 0,0088 0,0088 0,0141 0,0131 

 

Totally 6 resonance curves for the health and damage wind turbine tower were investigated. The resonance 

frequencies are presented in Tab. 4. 

Table 4. Resonance frequencies of health and damaged OWT 

frequency, 
[Hz] 

1 2 3 4 5 6 7 

health 0,1955 1,9550 5,7674 11,6813 19,5015 29,1789 40,2248 

damage 1 0,2440 2,3950 6,4520 12,2680 19,9900 29,1790 39,9320 

damage 2 0,1955 2,3460 6,4027 12,0723 19,4526 28,1036 38,9541 

damage 3 0,1955 2,3460 6,3539 11,9257 18,9150 27,3216 38,3675 

damage 4 0,1466 2,3460 6,3050 11,7791 18,4262 26,7840 38,0254 

damage 5 0,1466 2,3460 6,3050 11,5836 17,9863 26,3441 37,7322 

 

 

Figure 4 presents the inertance response curves obtained for wind turbine tower for health and damage states 

defined in Tab. 3 and 4. 
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(a) (b) 

  
(c) (d) 

Figure 4. Inertance response for offshore wind turbine tower, (a) full range of analysed frequency, log scale, (b) 

zoom for frequency range <0,15> Hz, log scale, (c) full range of analysed frequency, nonlog scale, (d) zoom for 

frequency range <0,15> Hz, nonlog scale 

For the average resonant frequencies, a distribution of 100 frequencies were determined for the first four  resonance 

frequency as a random number from the normal distribution with randomness of 5 % and 10 %.  The distribution 

curves are presented in Fig. 5 

 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 5. Samples generated with 5%, 10% randomness of frequencies for first four resonance frequencies, for 

ML training; (a), (c), (e), (g) full range samples; (b), (d), (f), (h) zoom of analysed samples 

For each frequency the damage index (DI) was calculated with the reference to mean value of the natural 

frequency. The tower was qualified based on DI as damage beam if DI ≤ 0.99, otherwise the beam was qualified 

as health. Then, the Support Vector Machine (SVM) algorithm was used to train the system to qualify the beam 

as damage or health. 80% of data was used for training and 20% for testing. 

 



Spectral Method and Machine Learning approach to Wind Turbine damage detection 

CILAMCE-2023 

Proceedings of the XLIV Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC  
Porto – Portugal, 13-16 November, 2023 

Samples generated with 5% randomness of frequencies [0.1955; 1.9550; 5.7674; 11.6813] Hz for ML training are 

presented in Fig. 6. 

 

 

  
(a) (b) 

  
  

(c) (d) 

  
(e) (f) 

  
(g) (h) 

 

Figure 6. ML for 5 % randomness samples; (a), (c), (e), (g) training; (b), (d), (f), (h) testing 

For damage and health state the accuracy of training algorithm, 5 % randomness (Fig.6.), 100 samples, frequencies  

[0.1955;1.9550;5.7674;11.6813] Hz, is [65, 65, 80, 100] % respectively, for 10 % randomness is [95, 100, 100, 

100] %. 
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4  Conclusions 

The subject of the analysis was the use of SEM and ML in damage prediction for offshore wind turbine tower IEA 

15MW. The FRF analysis showed how damage affect the shift of resonance frequency. The obtained results 

confirm the effectiveness of SEM and FRF in damage detection. 

The ML technique was used to classify the tower element. Structural elements were described by a number of 

parameters. Based on the data obtained from the simulation, the elements were classified depending on the 

resonance frequency depending on the level of the damage. The learning process was carried out using the SVM 

algorithm for randomly generated data with a distribution of 5% and 10%. The obtained classification results 

confirm the efficiency of the learning process. 
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