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Abstract. In this work, an accurate and efficient meshless technique - the Radial Point Interpolation Method 

(RPIM) – is used to address the numerical simulation of the viscoplastic extrusion process, which is the initial 

phase of the Fused Filament Fabrication (FFF), an extrusion-based additive manufacturing (AM) process. Unlike 

the FEM, in meshless methods, there is no preestablished relationship between the nodes in the nodal mesh. Thus, 

the concept of ‘element’ is inexistent. In meshless methods, nodal discretization can be straightforwardly modified 

since nodes can be added or removed from the initial nodal mesh. Hence, mesh-free techniques show a particular 

relevance if associated with AM processes since the nodes can be distributed to match the layer-by-layer deposition 

of the printing process. Additionally, meshless methods have shape functions with virtually a higher order, 

allowing a higher continuity and reproducibility. This work combines, for the first time, the flow formulation and 

the heat transfer formulation in an RPIM algorithm to simulate the extrusion process of viscoplastic materials like 

the ones used in the FFF. The proposed algorithm is developed, implemented, and then validated for benchmark 

examples. The accuracy of the obtained numerical results highlights the importance of using meshless techniques 

in this field. 

Keywords: Fused Filament Fabrication (FFF), Viscoplastic extrusion, flow formulation, meshless methods, 

Radial Point Interpolation Method (RPIM) 

1. Introduction 

Extrusion is a key-phase in some manufacturing processes like metal forming or extrusion-based Additive 

Manufacturing (AM) like Fused Filament Fabrication (FFF). It is a thermally driven process in which the domain 

is constantly changing either by phase change (solid to semi-molten material) or space-time movement of the 

particles inside the extruder. In this context, the numerical modeling of such a problem is a task suitable for 

meshless methods [1]. As their name suggests, these are advanced discretization techniques in which the problem 

domain is discretized using a set of nodes with no preestablished relationship – unlike the finite element method 

(FEM), for instance. Hence, the nodes can be arbitrarily distributed, and the velocities, pressures, and temperatures 

within the extrusion process are approximated using the influence-domain concept rather than an element. 

Therefore, the nodal discretization can be rearranged since nodes can be added or removed from the initial nodal 

mesh – the refinement procedure [2] becomes fairly straightforward. More importantly, since there are no initial 

connections between nodes, meshless methods do not face mesh distortions that would otherwise suggest the 

implementation of remeshing procedures. Thus, the authors understand that meshless methods have the potential 

to progress in many engineering applications, particularly in the numerical simulation of AM processes. Recently 

developed meshless methods have been studied in several applications such as crack path prediction [3], dental 
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implants [4], damage models [5], bone remodeling [1],  static [2] and dynamic [6] analysis of composite plates 

and shells, micromechanical analyses [7], etc. This work investigates the advantages of using a simple meshless 

method, the Radial Point Interpolation Method (RPIM) [8], in the simulation of the viscoplastic extrusion process 

that occurs in the FFF and metal forming processes.  

2. Radial Point Interpolation Method (RPIM) 

The RPIM is an advanced version of the Point Interpolation Method (PIM) [9], which adds radial basis 

functions (RBF) to the polynomial basis function already used in PIM. Therefore, the shape functions in the RPIM 

are stabler and more robust interpolation functions than in the RPIM. In this meshless method, nodal connectivity 

is ensured through the overlap of the influence-domains. In two-dimensional problems, like the one analyzed in 

this study, influence-domains, are circular areas whose center are the integration points. The size of the area 

depends on the user’s choice to use fixed or variable size influence-domains. Thus, influence-domains can have 

distinct areas but the same number of nodes within those areas – this is the preferable option since it creates shape 

functions with the same degree of complexity.   

 

In the RPIM, the differential equations of the Galerkin weak form are integrated using the Gauss-Legendre 

quadrature creating a background integration mesh. This mesh is composed of quadrilateral cells and in each cell 

are placed the required Gauss integration points. Thus, this approach is similar to the FEM’s integration procedure. 

The complete RPIM formulation is available in the literature [1], [10]. This work will now focus on the 

implementation of the extrusion model within an RPIM’s code.  

3. Extrusion Model and Computer Implementation 

In this work, the fluid flow formulation, initially proposed by Zienkiewicz [11]–[15] is adapted from the 

FEM to the RPIM.  The approach by Zienkiewicz and Godbole [15] is the study used in this paper as a reference 

since it gives a more general solution for viscoplastic materials. Some considerations are taken into account before 

presenting the governing equations and the discrete system of equations: (1) the extrusion process involves large 

deformations, so the elastic effects are generally insignificant and will be neglected [13]; (2) the latter assumption 

leads to the treatment of the fluids studied here as viscoplastic non-Newtonian fluids; (3) the materials are 

considered to be isotropic and incompressible; (4) The Reynolds number is considered to be small [16], and so 

flow is considered laminar.  

3.1. Governing equations 

The equilibrium equations of the extrusion process can be expressed as a system of three equations: mass 

conservation, momentum conservation, and energy conservation, as show in Eq. (1): 
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where ( )   D=  is the stress tensor, D  the constitutive matrix of the material which can be dependent on 

the strain rate, ( )
1

2

T  + 
 

 = v v , and the temperature,  , v  is velocity field, b  represents the body forces,   is 

the density, c  is the material heat capacity per unit volume, and q  is the divergence of the heat flux, which is 

proportional to the temperature gradient following the Fourier heat conduction law: 

 

= −q k  (2) 
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where = kk I  is the thermal conductivity ( k  is a constant for isotropic and homogeneous materials). Q  is the 

conductive heat, and   is the viscous dissipation [17] given by: 

 

2 ij ij  =  (3) 

 

Thus, the energy conservation equation can be rewritten as: 

 

( ) ( ) 2TT
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Regarding the material’s constitutive behavior, for general non-Newtonian fluids, there is a strain-rate and 

temperature-dependent viscosity: ( ),T  = . However, it is common to simplify the viscosity’s dependency as 

( )  =  [18], with effective strain rate defined as 2
:

3
 =   . In this work, to model the material’s viscosity, 

the Perzyna model for viscoplastic materials is used. Perzyna’s viscoplastic model is dependent on three material 

parameters: the fluidity parameter,  , the power coefficient n , and the yield stress, ( ),Y T  : 
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3.2. Discrete system of equations 

The discrete system of equations is established by writing the weak form of the governing equations (1). This 

procedure was presented by Costa et al. [10], [19], [20] for the first two equations in (1). In these works, the authors 

obtain the solutions for the flow problem (without thermal effects) using the mixed dual method. This solution 

method uses two distinct nodal discretizations and computes velocities and pressures as outputs of the discrete 

system of equations. One of the nodal meshes is used for velocities calculation and the other nodal mesh allows 

the pressure computation. Independent influence-domains are established for the two nodal meshes, and so the 

shape functions used for velocity and pressure interpolations are not equal. Despite the nodal meshes being 

different, they share the same background integration mesh where RPIM’s integration is performed. Thus, for a 

given influence-domain concentric with a certain integration point, its area will contain more velocity nodes than 

pressure nodes. This methodology mimics a hybrid integration scheme. In this work, the same procedure is adopted 

to integrate the energy conservation equation. To calculate the nodal temperatures, the velocity nodal mesh is used 

– then, the temperature influence-domains are the same as the velocity influence-domains.  

 

As obtained in [10], the discrete system of equations of the flow problem (velocities and pressure as field 

variables), is given as: 
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  is the traction boundary at which the external forces, t , are applied, v is the velocity vector containing the 

nodal velocities of each node composing a domain of influence with n  nodes, p  is the pressure nodal vector, 

v  is the matrix containing the velocity interpolation functions, 
p  the vector containing the pressure shape 

functions, calculated based on the pressure influence-domains. ( )IB x  is  deformation or strain matrix, containing 

the partial derivatives of the velocity shape functions ,  
T

1 1 1 0=m , 7 810 −=  represents a very large number 

enforcing the incompressibility condition, and 
0I  is presented in Eq. (8): 
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As stated before, the discretization of the energy equation follows the same procedure described in the 

literature [10] for the continuity/mass-momentum equations. The temperature at Ix  , ( )IT x  , can be calculated 

using:  

 

 1( ) ( ) ( ) ( ) ( )I t I I I It t2 tlT   =x x T = x x x T  (9) 

 

being  
T

1 2 lT T T=T  the local temperature vector and  
t   the vector containing interpolation functions 

used to interpolate the temperature, calculated based on the temperature influence-domains with l  nodes. In this 

work, 
t v=  .  The discrete form [13], [21] of the energy conservation equation can be rewritten as: 
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where T  the temperature derivative with respect to time. The previous equation can be condensed in the following 

manner, for a bidimensional problem: 
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Equation (12) expresses a transient problem in time which is solved here using a backward finite difference to 

obtain the time derivatives: 
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t  is a time-step, 
t

T  is temperature field of the present time-step, and  
t t−

T  the temperature vector of the 

previous time-step. Thus, the discrete system of equations of the heat transfer problem is finally given as: 
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I is an identity tensor with dimensions  l l , D  is the convective or transport matrix, L  is the thermal 

conductivity matrix, and  g  is the heat loading vector. Under steady-state conditions, the system (14) becomes: 

 

( )+ =D L T g  (16) 

 

Finally, the complete discrete system of equations is given in Eq. (17): 
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The implemented uncoupled/sequential algorithm solves first the first system of equations in (17) – the mass-

momentum equations – and then solves the energy equations to compute the temperature field iteratively, since 

the temperature is velocity-dependent.  

4. Preliminary Numerical Results 

The system of equations attained in the last section, combined with the RPIM formulation, derives into an 

algorithm capable to simulate the viscoplastic extrusion process. To do so, it is required to define the Perzyna’s 

material parameters 
Y ,  , and n  - which are found in [13], [22] as a function of the temperature (given in ºF) 

for a titanium alloy, Ti-6Al-4V, the same material studied by Zienkiewicz et al. in [13]. The problem domain is 

described in Fig. 1. At the bottom boundary, a symmetry condition is imposed, while at the left boundary, a velocity 

of  3.5 cm / s
x

v =  and a temperature of 1750 º FT =  are imposed. In the RPIM formulation, a regular nodal mesh 

with 3817 nodes was created, composed of 180 grid divisions in the horizontal direction and 36 divisions in the 

vertical direction. 6 by 6 Gaussian integration points were considered for each grid division and the velocity and 

temperature influence-domains are composed of 16 nodes.  

 

 

Figure 1 - Plane extrusion model domain. 
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Figure 2 shows the results obtained with the RPIM/mixed dual method for a steady-state plane viscoplastic 

extrusion problem. The graphs of Fig. 2 took 4 iterations to be computed, which shows fast convergence of the 

meshless approach for this highly nonlinear problem.  

 

  
 

  

Figure 2 – Velocities ( cm / s ), pressure ( 2N / cm ), and temperature ( º F ) fields for the plane extrusion 

benchmark problem. 
 

The temperature map in Fig. 2 is smooth and physically reasonable: higher temperature spots are subjected 

to higher velocities, which generates higher strain rates and therefore an increase in viscous dissipation. In [13], 

Zienkiewicz et al. provides a very similar graph for the temperature field but computed using the FEM with nine-

noded isoparametric Lagrangian quadrilateral elements with biquadratic shape functions for velocities and 

temperature. Comparing both graphs, it can be found that the relative difference between the maximum 

temperature computed with the RPIM/mixed dual method and the maximum temperature obtained using the high-

order FEM [13] is 0.47%, since the highest computed temperature with the RPIM is 1851.12 ºF and in [13] the 

maximum obtained temperature is 1860 ºF. Zienkiewicz et al. did not present velocity and pressure maps so the 

same comparison cannot be performed for the other variables.  

Conclusions 

The RPIM was used as a discretization technique to compute the integrodifferential equations obtained from 

the Galerkin weak form applied to a fluid flow/heat transfer problem. Therefore, the developed algorithm, here 

briefly explained, can be used to simulate the extrusion process on viscoplastic materials, In the implemented 

algorithm, the temperature field depends on the velocity field, which then depends on the material viscosity which 

is temperature and strain rate-dependent, making this a highly non-linear problem. The RPIM proved to be a 

capable and efficient method to study the uncoupled flow and heat transfer problem, achieving similar results to 

high-order FEM and not facing mesh distortions due to its meshfree characteristic. 

 

Analyzing the preliminary results of this study, the new algorithm can be capable of future analyzing the 

viscoplastic extrusion process applied to metal forming processes or AM processes, once the viscoplastic material 

parameters are known.  
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