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Abstract. Computational mechanics emerged alongside the advent of the first computers and has undergone sig-
nificant development since then. Presently, the literature describes numerous advanced numerical techniques for
discretization that are capable of efficiently conducting structural analyses. The finite element method (FEM) was
one of the earliest discrete numerical methods to be developed and remains the most popular technique among the
computational mechanics research community. FEM is known for its ease of programming, robustness, and ability
to provide reasonable approximations. However, despite its efficiency and success, the last decade of the previous
century witnessed the emergence of new, mature advanced discretization techniques known as meshless methods.
In contrast to FEM, which discretizes the problem domain using a structured element mesh comprising a grid of
nodes, meshless methods discretize the domain with an unstructured nodal distribution. Consequently, meshless
methods enable the creation of discrete geometric models directly from medical images or CAD geometries. This
advantage in meshing is a valuable asset in the fields of computational mechanics and biomechanics. This work
presents a brief description of the evolution of advanced discretization meshless techniques in computational me-
chanics and biomechanics, highlighting the most significant ones and their formulations. Furthermore, it presents
several demanding numerical applications in computational mechanics and biomechanics developed by the author
and his research team. These applications encompass the analysis of transient behavior in bone tissue, the study
of elastoplastic behavior in metallic and biological tissues, examination of blood fluid flow, and investigation of
the structural response of implants and bio-structures. The results obtained using meshless methods are compared
with FEM solutions to provide insights into the efficiency and accuracy of meshless techniques.

Keywords: Computational Mechanics, Computational Biomechanics, meshless methods, radial point interpola-
tion meshless methods

1 Introduction

Within classical computational mechanics and biomechanics, three essential phases play a crucial role: mod-
ulation, simulation, and analysis. Accomplishing these phases requires the use of discretization techniques. This
iterative design process is intricately linked to the chosen numerical methodology. As the research community con-
tinually strives to achieve the most accurate numerical reproduction of biological phenomena, numerous numerical
methods have emerged, each capable of effectively handling the aforementioned design phases [1].

Among the various numerical approaches described in the literature, there are fundamental differences, lead-
ing to distinct numerical performances. Presently, the finite element method (FEM) stands as the most popular
discretization technique [2]. The FEM replicates the physical domain through a virtual geometric model con-
structed with non-overlapping finite elements, ensuring a continuum within the model. However, employing the
FEM requires an extensive pre-processing phase to construct a well-balanced element mesh.

The performance of the FEM heavily relies on the quality of the model’s mesh, and any mesh modifications or
refinements during the analysis introduce additional computational costs, which can be a significant drawback. De-
spite these challenges, the FEM remains a widely-used and effective method for tackling computational mechanics
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and biomechanics problems in the current literature.

2 Meshless methods

Recently, meshless methods have earned significant attention within the computational mechanics scientific
community as viable solutions for solving partial differential equations. In contrast to the traditional FEM, mesh-
less methods approximate field functions within an influence-domain rather than an element, enabling arbitrary
node distribution [1, 3].

The influence-domain represents a crucial geometrical concept in meshless methods, facilitating nodal con-
nectivity enforcement [1]. Unlike FEM, where elements must not overlap, in meshless methods, the influence-
domains can and must overlap to ensure nodal connectivity.

Numerical methods in this domain can be classified into three fundamental parts: the field approximation
(or interpolation) function, the formulation used, and the numerical integration scheme. The literature offers
various options for approximation functions, including Taylor approximation, moving least-square approximation,
reproducing kernel approximation, and hp-cloud approximation function. Additionally, interpolation functions
like polynomial interpolation, parametric interpolation, radial interpolation, and Sibson interpolation are popular
alternatives.

The concept of ”support domain” in FEM is replaced by the notion of ”element,” containing information about
connectivity with neighboring elements. In meshless methods, nodal connectivity substitutes element connectivity,
and the ”influence-domain” concept is employed to determine connectivity for each node within the node cloud
discretizing the problem domain.

Regarding formulation, numerical methods fall into two categories: strong formulation and weak formula-
tion. The strong formulation directly employs partial differential equations to obtain solutions, while the weak
formulation uses variational principles to minimize the residual weight of the governing differential equations [1].
Both FEM and most meshless methods utilize weak formulations, as they accommodate differential equations with
non-differentiable solutions common in biomechanical phenomena.

The third fundamental part is numerical integration, necessary for obtaining the integral of the residual weight
of differential equations. Common schemes involve background meshes with integration points covering the entire
problem domain. Integration points possess an influence area (or volume) and weight, representing the theoretical
infinitesimal mass portion in the integral expression. Meshless methods can be considered ”truly meshless” if the
integration points’ locations and weights are obtained directly from the nodal distribution. Point collocation and
nodal integration techniques enable truly meshless methods [1, 4–9], allowing for nodal clouds directly obtained
from CAD parts in structural mechanical analyses or medical CAT scans and MRI in biomechanics, where nodal
connectivity, integration points, and shape functions are determined solely based on nodal spatial information.
Notably, truly meshless methods can even identify distinct biomaterials from medical images and directly affect
nodes with corresponding material properties.

Due to their interpolating properties, truly meshless methods hold substantial appeal in computational me-
chanics. Subsequent subsections explore relevant works demonstrating the efficiency of these techniques.

3 Meshless methods in structural mechanics

Subsequent to an initial foray into programming and the development of the Element-Free Galerkin Method
(EFGM) [10], designed for the analysis of elastostatic and nonlinear elastoplastic behaviors within thick plates
and laminates employing equivalent single-layer theories [4, 11, 12], the author embarked on the exploration of
novel meshless methodologies. The overarching objective was the creation of genuinely interpolation-based mesh-
less methods, underpinned by the ability to leverage the boundary imposition techniques previously harnessed by
the Finite Element Method (FEM). This initiative resulted in the formulation of two such interpolation meshless
methods: the Natural Neighbour Radial Point Interpolation Method (NNRPIM) [4] and the Natural Radial Ele-
ment Method (NREM) [5]. The NNRPIM seamlessly integrates the shape function methodology of Radial Point
Interpolators (RPI) [1, 13, 14] with the natural neighbour concept [6, 7]. Importantly, the NNRPIM exhibits ex-
ceptional accuracy, enabling the acquisition of numerical solutions that closely align with their analytically exact
counterparts. The NREM represents an enhanced iteration of the NNRPIM, where shape functions are constructed
using a notably reduced number of nodes. The formulation of nodal connectivity and integration schemes again
draws from the concept of natural neighbours. Notably, the NREM can be seamlessly coupled with FEM [5].

Subsequent to this foundational work, both NNRPIM and NREM underwent expansion to accommodate
elastostatic analyses of thick plates and laminates, embracing the First Order Shear Deformation Theory (FOSDT)
[15–17], as well as other high-order shear deformation theories [18]. Specifically concerning thick laminates within
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the FOSDT framework, a performance comparison of these two interpolation meshless methods was conducted
against high-order finite element formulations and the EFGM [6]. Additionally, for beam structures, the NNRPIM
was applied to scrutinize the behavior of thick laminated beams under various loading conditions [19, 20].

Subsequently, an innovative shell-like 3D formulation was conceived for NNRPIM, enabling the simulation of
thin structures subject to transverse loads [21, 22]. This formulation found application in resolving the mechanical
characteristics of thin isotropic and laminated shells.

The ambit of nonlinear dynamic analysis for structures was also a salient focus of NNRPIM’s application.
Preliminary undertakings encompassed the dynamic analysis of both 2D and 3D structures [23, 24]. This trajectory
led to the extension of NNRPIM to encompass the dynamic analysis of laminated plates under transverse loads,
facilitated by the utilization of an unconstrained high-order shear deformation theory [25].

Leveraging the inherent adaptability of NNRPIM, a nonlinear geometric algorithm was implemented to fa-
cilitate large strain analysis [26], thereby validating NNRPIM’s heightened performance in addressing demand-
ing nonlinear scenarios. Beyond accommodating substantial deformations, NNRPIM’s domain expanded to en-
compass the nonlinear analysis of elastoplastic anisotropic materials demonstrating both elastic and hardening
anisotropy [27], as well as continuum damage mechanics for brittle materials such as concrete and ceramics [9, 28–
30]. Noteworthy research endeavors on NNRPIM effectively validated its efficacy via experimental data, thereby
substantiating its capacity to accurately simulate the elastoplastic response of materials like steel alloys [31] and
aluminum alloys [31].

Furthermore, NNRPIM exhibited notable applicability across diverse domains within computational me-
chanics, including fracture mechanics [32–36]. In these contexts, NNRPIM’s capability to achieve solutions
closely approximating experimental data or well-established techniques, including the eXtended-FEM (XFEM)
[37], was demonstrated. Notably intricate examples were investigated, involving mixed crack modes, double frac-
tures [32, 33], and the presence of material discontinuities such as small and large holes [34, 35]. A more recent
development saw NNRPIM’s application in the multi-scale analysis of composite materials, enabling the derivation
of homogenized material properties at the microscale for macroscopic utilization [38, 39].

4 Meshless methods in biomechanics

Meshless methods offer a multitude of advantages over the Finite Element Method (FEM), a prime example
being their proficiency in handling remeshing. This characteristic allows for explicit simulation of fluid flow
phenomena such as hemodynamics, swallowing, and respiration, as well as accommodating significant distortions
in soft materials like internal organs, muscles, tendons, and skin. Furthermore, the inherent smoothness and
precision exhibited by solution fields obtained through meshless methods, encompassing displacements, stresses,
and strains, prove invaluable in forecasting the remodeling of biological tissues and predicting the rupture or
damage of biomaterials. Recent investigations highlight the enhanced efficacy of meshless methods in conjunction
with medical imaging modalities like CAT scans and MRI, surpassing the capabilities of FEM [40, 41]. This
observation has been further substantiated via the application of the NNRPIM [42]. Given their benefits, meshless
methods emerge as a compelling alternative to FEM within the realm of biomechanics [43].

Doweidar et al.’s work [44] substantiates the superiority of meshless methods in biomechanical scenarios
characterized by substantial strains, exemplified by the simulation of human lateral collateral ligaments and knee
joints. A notable extension by Zhang et al. [45] involves the adaptation of meshless methods to nonlinear ex-
plicit dynamic analysis of brain tissue response. Subsequent use of NNRPIM in studying the brain’s reaction to
abrupt impacts [42, 46] reaffirms the meshless approach’s accuracy in addressing intricate nonlinear hyperelastic
biomaterial dynamics.

The application of meshless methods in hemodynamics is widespread. Literature reveals instances where
these techniques model deformable red blood cells in flowing plasma [47] and investigate the influence of red
blood cells on primary thrombus formation [48]. Particle-based meshless methodologies extend their prowess to
studying other biofluids, such as endolymph within the inner ear [49], enabling insights into vestibular system
disorders [50, 51]. The NNRPIM complements these studies by offering insight into solid structure dynamics,
particularly in contexts like the cupula encompassed by endolymph [52].

Within computational biomechanics, meshless methods have garnered acclaim in predicting bone tissue re-
modeling [53]. An early milestone in this domain was set by Liew et al. [54], followed by successful applications
by others in simulating bone tissue remodeling [55, 56]. Belinha et al. [57, 58] presented a novel bone tissue
remodeling algorithm founded upon the accuracy of meshless methods. This methodology closely approximated
clinical X-ray images of natural and implanted bones [33, 59, 60], even extending its purview to predicting dental
biomechanical behavior with and without implants [60–64].

In the sphere of bone tissue simulation, a harmonious integration of the NNRPIM and RPIM with the fabric
tensor concept gave rise to a bone tissue homogenization procedure [65, 66]. This technique facilitates multiscale
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analyses with remarkable efficiency, outperforming conventional homogenization approaches in terms of compu-
tational time. This efficiency is further accentuated by the inherent accuracy of both meshless methods, enabling
precise results with a reduced node count.

The simulation of nonlinear biological material behavior is another domain where meshless methods ex-
cel. Given the iterative nature of such problems, the accuracy and smoothness of stress and strain fields assume
paramount importance for achieving stable and robust solutions. Belinha and colleagues have advanced non-
linear elasto-plastic constitutive models for emulating the biomechanical responses of bone structures [64] and
atherosclerotic plaque tissue [67], seamlessly integrating these models with meshless methods. The outcomes of
these simulations offer precise predictions of failure in these biological structures. Notably, meshless methods also
find application in simulating the behavior of endolymph, a pivotal component of the vestibular system that plays
a crucial role in vertigo.

5 FEMAS

The Finite Element Method (FEM) stands as the preeminent discretization technique within the realm of
computational mechanics. The widespread success of FEM is attributed to its robustness, accuracy, and inherent
programming simplicity. Such attributes are such that even undergraduate engineering students can adeptly develop
FEM programs. Furthermore, the availability of a plethora of FEM software, many of which are freely accessible,
and the prevalence of student versions within commercial offerings extend opportunities for both students and
researchers to harness its capabilities. In stark contrast, the landscape for meshless methods assumes a distinct
complexion. Despite their high accuracy, meshless methods are considerably more intricate than FEM and pose
greater programming challenges. Moreover, the availability of software catering to meshless methods remains
scarce, often beyond the reach of the broader computational mechanics community.

In response to this challenge, the author has dedicated the past five years to crafting a comprehensive and
user-friendly meshless software solution: the Finite Element method and Meshless Analysis Software (FEMAS –
cmech.webs.com). Distinctive to FEMAS is its capacity to empower students and researchers through an intuitive
graphical user interface (GUI). The software has been endowed with a diverse array of capabilities, encompassing
static linear-elastic and elasto-plastic material analyses, crack opening path prognostication, bone tissue remodel-
ing simulations, free vibration and buckling analyses, analyses of viscoelastic and viscoplastic fluid flows at low
velocities, thermo-mechanical analyses, and structural optimization studies.

Furthermore, the software encompasses a spectrum of finite element formulations for both 2D and 3D anal-
yses. Additionally, the inclusion of three meshless methods – the Radial Point Interpolators Method (RPIM),
the Natural Neighbour Radial Point Interpolation Method (NNRPIM) and the Smoothed Particle Hydrodynamics
(SPH) – reinforces the versatility of the toolset. By harnessing this software, users are afforded the ability to
employ various numerical approaches and undertake comparative studies of diverse analyses/formulations. Impor-
tantly, the platform permits users to seamlessly incorporate their own routines, thereby reducing the learning curve
and fostering accelerated scientific progress.

6 Conclusion

A substantial body of research literature underscores the compelling numerical efficacy of meshless methods
[1]. Drawing from these scholarly contributions and informed by the author’s personal insights, a near-term hori-
zon portends the substitution of conventional numerical methodologies, such as Finite Element Method (FEM),
with meshless methods or their advanced counterparts in both computational mechanics and biomechanical anal-
yses. A wealth of unexplored mechanical computational domains exists, encompassing diverse physical behaviors
encompassing electrical, magnetic, chemical, thermal, biological, and fluid-solid interactions. Significantly, mesh-
less methods have thus far demonstrated their adeptness in offering precise solutions to all these physics-laden
conundrums. The amalgamation of the discretization versatility intrinsic to this innovative methodology with its
exceptional accuracy holds the promise of shattering existing scientific barriers. It has the potential to unveil novel
therapeutic avenues within biomechanics and facilitate the prognostication of pathological states.

In the realm of biomechanics, a future outlook anticipates meshless methods contributing to: (1) Guiding
surgical interventions through the governance of real-time virtual numerical models, thereby aiding surgeons;
(2) Enabling a myriad of in-silico experiments that assess the impacts of new pharmaceutical agents at both the
micro-scale (cellular level) and macro-scale (muscles, bones, tendons, etc.); (3) Prognosticating the regeneration
trajectories of soft and hard tissues, thus facilitating the optimal selection of physical or chemical therapies; (4)
Predicting the post-scan health status or failure susceptibility of biological structures post a comprehensive CAT
scan; (5) Designing patient-specific instrumentation or prosthetics, intrinsically tailored to the unique physiognomy
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of each patient.
Within the realm of meshless methods, the boundaries of computational mechanics and biomechanics remain

boundlessly expansive. The constraints are delimited solely by our creativity and the necessities that underpin
them.
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