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Abstract. The mechanical response of textile composite materials depends substantially on the configuration of
fibers that compose a given textile material pattern. The fibers’ configuration is, however, difficult to be predicted
due to several factors such as their large deformability and nonlinear mechanical response. The large deformability
of textiles results from the characteristics of these materials, in which the axial stiffness of yarns is predominant.
The overall nonlinear response is a complex phenomenon that includes, but is not limited to, complex yarns’ con-
tact interactions. As a possibility to overcome these difficulties, in this work, the textile’s mechanical behavior is
modeled with beam elements and contact formulations. A geometrically-exact structural formulation that can han-
dle large displacements and finite rotations is adopted for the beam elements. Moreover, two contact formulations
including nonlinear compliance laws are employed. The former contact formulation considers surface-to-surface
interaction while the latter uses a beam-to-beam smooth approach. This textile modeling strategy, including both
contact formulations, is verified with biaxial tension experimental results. The advantages and disadvantages of
each contact formulation when compared to the experimental results are discussed.
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1 Introduction

The mechanical behavior of dry textiles is a topic of great complexity due to several factors, such as their
nonlinear mechanical response, large deformability, and yarns’ contact interaction. In this context, an example of
experiment of great importance is the biaxial tension. In this experiment, a textile sample is attached to an appa-
ratus where distinct displacements are imposed in each main direction, while reaction forces are simultaneously
measured.

The objective of this work is to compare and discuss the mechanical behavior of a plain woven glass fab-
ric under biaxial tension considering experimental results from [1], and a modeling strategy that combines a
geometrically-exact beam theory with surface-to-surface [2] and beam-to-beam contact formulations [3].

2 Contact Formulations

In both here adopted surface-to-surface and beam-to-beam contact formulations the contact interaction is
treated as pointwise. Pointwise interaction assumes that the contact phenomena can be described by resulting
forces acting at a single point in each body. Therefore, a fundamental step is to obtain the locations, or material
points, where these contact forces may take place. The problem of finding these material points is frequently
named as “Closest Point Projection (CPP)” or “Local Contact Problem (LCP)” [4, 5]. Despite the nomenclature,
the goal is to locate points where the contact interaction is likely to occur. Once these points are located, a LCP
solution is found.

For a given LCP solution, it is possible to evaluate the distance (or gap) between these material points and
ultimately verify their contact interaction. If contact is confirmed, contact forces take place at the material points

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023



Textile Modeling with Beams and Contact: A Biaxial Tension Study

ΓA

ζA

θA

ζB

θB

𝐠

ΓB

𝐱AA

𝑸AA

𝐱BA

𝑸BA

𝐱AB

𝑸AB

𝐱BB

𝑸BB

(θA,ζA)

(θB,ζB)

(a) Surfaces parametrizations and Lo-
cal Contact Problem. Extracted
from [2].

ΓA

ΓB

𝒖AA

𝜶AA

𝒖BA

𝜶BA

𝒖AB

𝜶AB

𝒖BB

𝜶BB

(b) Surfaces DOFs involved.

Figure 1. Surfaces ΓA and ΓB prone to contact.

previously obtained. These contact forces are calculated according to an interface law that may even be experi-
mentally obtained. These contact forces limit and rule the surface’s penetration, which is admitted and controled
to some extent. This process occurs multiple times according to the model number of contact elements and defor-
mation along time, which is considered in a numerical simulation. The surface-to-surface contact formulation is
detailed in [6, 7] while the beam-to-beam contact formulation is presented in [3, 8]. The subsections below aim to
provide an overview of both formulations to enhance overall comprehension.

2.1 Surface-to-Surface Contact Formulation

Consider two contact surfaces ΓA and ΓB , which are prone to contact. Figure 1a illustrates a LCP solution
in which the material points are located in terms of the surfaces’ convective coordinates as cA = [ζA θA]

T in ΓA

and cB = [ζB θB ]
T in ΓB . For convenience, these coordinates can be joined in a single vector c as

c =
[
cA cB

]T
=

[
ζA θA ζB θB

]T
. (1)

An important aspect of contact formulations are the degrees of freedom (DOFs) considered according to
the structural model. In the surface-to-surface contact formulation, translational (u) and rotational (α) degrees
of freedom are treated. Figure 1b illustrates the degrees of freedom of ΓA and ΓB . Again, these generalized
displacements can be joined into a single vector d given as

d =
[
dA dB

]T
=

[
uT
AA uT

BA αT
AA αT

BA uT
AB uT

BB αT
AB αT

BB

]T
. (2)

Considering then these parametrizations, ΓA and ΓB can be expressed as

ΓA(ζA, θA) = x̂(ζA) + â(ζA, θA)

ΓB(ζB , θB) = x̂(ζB) + â(ζB , θB)
(3)

where x̂(ζi) with i = A,B is a function to define the beam axis and â(ζi, θi) with i = A,B is a function to
describe the beams’ external lateral surface. In the adopted surface-to-surface contact formulation elliptical cross-
sections are adopted. The contact surfaces’ parametrization is detailed in [9].

Considering a pair of contact surfaces ΓA and ΓB , it is possible now to formulate a single gap function g
including all their respective convective coordinates and degrees of freedom. The gap function g is defined as

g = ĝ(c,d) = ΓA − ΓB . (4)
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The gap function g spatially represents the difference (distance) between ΓA and ΓB . Therefore, the LCP
can be expressed, for a given gap function g, as

r =


ΓA,ζA

· g

ΓA,θA
· g

−ΓB,ζB
· g

−ΓB,θB
· g

 = o4 (5)

where the notation A,b = ∂A/∂b is adopted to represent partial derivatives, and o4 is used to represent a null
column matrix of order four. The solution of the LCP in equation eq. (5) is a set of four convective coordinates
c̄ = [c̄A c̄B ]

T = [ζ̄A θ̄A ζ̄B θ̄B ]
T . For an LCP solution c̄ it is still possible to obtain the contact forces direction

and magnitude respectively from g and gn = ∥g∥. Finally, the normal contact contribution to the model weak
form can be calculated as

δWc = fn · δg = fnδgn, (6)

where fn is the normal force contact vector that is obtained from a normal interface law, fn is the normal force
magnitude given by fn = ∥fn∥, and “δ” is used to indicate virtual quantities. In the case of a linear interface law,
a single linear coefficient ε is necessary to rule surfaces’ penetration. This parameter is commonly named as a
penalty parameter.

2.2 Beam-to-Beam Contact Formulation

Consider now two curves ΓA and ΓB as contact elements in a 3-dimensional space. In this case one can
formulate the LCP as the closest point bilateral projection between these curves. Figure 2a illustrates a LCP
solution between ΓA and ΓB . Moreover, it is possible to express the material point location in each curve using
a single convective coordinate. Consider therefore two convective coordinates ξA and ξB that are respectively
associated with ΓA and ΓB . The convective coordinates of ΓA and ΓB can be joined into a single vector c defined
as

c =
[
cA cB

]T
=

[
ξA ξB

]T
. (7)

It is convenient now to introduce the DOFs associated with the beam-to-beam contact formulation. For the
proposed formulation only translational (u) DOFs are considered. Figure 2b illustrates the translational DOFs
adopted for ΓA. The translational DOFs of ΓA and ΓB can also be respectively joined into a single vector d
defined as

d =
[
dA dB

]T
=

[
uT
AA uT

BA uT
CA uT

AB uT
BB uT

CB

]T
. (8)

In the proposed beam-to-beam contact formulation a spline description is adopted to describe the curves
in space. A spline can be seen as an elegant way to describe curves in space with some desirable features. A
spline curve is obtained by combining a set of points with special basis functions to guarantee a certain level of
continuity [10]. For the proposed formulation, each spline segment is defined by a set of three points (nodes)
and the basis functions are calculated to guarantee at least C1 continuity. The process of constructing the spline
elements is detailed for the adopted beam-to-beam contact in [3]. It is possible now to properly express the contact
elements ΓA and ΓB as
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(a) Surfaces parametrizations and
Local Contact Problem. Adapted
from [3].

(b) Spline DOFs involved. Taken
from [3].

Figure 2. Splines ΓA and ΓB prone to contact.

ΓA(cA,dA) = CA(ξA)

ΓB(cB ,dB) = CB(ξB)
(9)

where CA(ξA) and CB(ξB) are the corresponding spline curves. The gap function g can be then defined, consid-
ering two contact ΓA and ΓB , as

g = ĝ(c,d) = ΓA − ΓB . (10)

The gap function g represents then the distance between curves ΓA and ΓB in space. The gap function is
particularly important for the contact formulation since it gathers all convective coordinates and DOFs from ΓA

and ΓB . For a given gap function g with curves the LCP is simply formulated as

r =

 ΓA,ξA ·g

−ΓB ,ξB ·g

 = o2. (11)

o2 indicates a null column matrix of order two. The solution of eq. (11) is a set of two convective coordinates
c̄ = [c̄TA c̄TB ]

T = [ξ̄A ξ̄B ] corresponding to material points in ΓA and ΓB . A LCP solution is, however, not enough
to ultimately characterize a contact interaction since until now only curves were considered. To characterize the
contact interaction it is necessary to attach cross-sectional information to the curves. It is possible to conceive a
contact surface by sweeping the spline curve with the cross-section defined. For the proposed formulation only
circular cross-sections are adopted. Assuming that two radii rA and rB are respectively associated with ΓA and
ΓB , it is feasible to evaluate the contact magnitude. The contact magnitude, or effective gap, is therefore calculated
as

ge = ĝe(c,d) = ∥ΓA − ΓB∥ − (rA + rB). (12)

Finally, with all these quantities, the normal contact force contribution to the weak form can be obtained as

δWc = fn · δ(gen) (13)

where fn is the normal contact force vector, n is the normal contact direction given by n = g/∥g∥, and the
notation “δ” is used to indicate virtual quantities. A broad range of interface laws (including nonlinear) can be
adopted to calculate the normal contact forces. However, in a linear case, a single penalty parameter ε that is
directly proportional to the penetration magnitude is necessary.
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3 Structural Formulation

For both contact formulations presented a geometrically-exact beam theory is used. The geometrically-exact
beam theory was introduced in the seminal works of Simo [11–13] and after expanded by many authors. A detailed
description of the beam theory here adopted is presented in [14, 15]. To keep work conciseness only the kinematic
of a material point for the beam theory is presented. In the geometrically-exact beam theory the position of a beam
element generic point x is depicted as

x = ζer3 + u+Qar, (14)

where ζ is an beam axis convective coordinate, er3 is the beam axis direction in the reference configuration (straight
beam), u is the beam axis displacement field, Q is a rotation tensor field, mapping the cross-section from the
reference configuration to the current configuration, ar is a vector reading the cross-section shape in the reference
configuration. An important aspect of eq. (14) is that this generic point can experience arbitrary large displacements
and finite rotations. Moreover, after some mathematical effort, it is possible to establish equilibrium by calculating
all contributions to the weak form [15, 16].

4 Textile Modeling

To model the biaxial tension textile behavior the Giraffe finite element solver [17–19] is combined with the
TexGen® [20] textile modeling tool. The Giraffe finite element solver is a compelling tool since it includes several
contact formulations and geometrically-exact beam elements. Moreover, the TexGen® software is a powerful tool
specialized in the geometric modeling of textiles.

To build the biaxial tension computational model, three steps are necessary. First, an originally developed
software generates a Python script for the TexGen® including essential information such as the number of yarns
in each direction, the in-plane yarn spacing, the out-of-plane yarn spacing (gap between yarn’s), the yarn in-plane
length. Second, the TexGen® software generates a file containing a detailed geometrical description of the yarns.
And third, the originally developed software reads this information and generates a corresponding Giraffe input
file.

5 Biaxial Tension Study

The objective of this study is to compare the experimental and computational modeling results with respect
to the mechanical behavior of a plain glass fabric under biaxial tension. The experimental results here considered
are presented in [1]. For the computational modeling, a geometrically-exact beam theory is combined with two
distinct contact formulations, a surface-to-surface and a beam-to-beam spline-based contact formulation. The
results concerning the biaxial tension modeling with the surface-to-surface are presented in [2].

The biaxial tension experiment is defined by simultaneous tension imposed at both main textile directions
(warp and weft). During the experiment, force-strain graphics are obtained in each direction. Moreover, different
strain levels can be imposed in each direction. The strain ratio of a biaxial tension experiment is defined as
k = ϵwarp/ϵweft, where “warp” and “weft” are assumed to be respectively the “x” and “y” directions.

To model the glass fabric a material with a tensile stiffness (EA) of 38000N , a Poisson ratio of 0.2, and
a specific mass of 2540kg/m3 is adopted. For the surface-to-surface contact formulation that takes ellipsoidal
cross-sections a beam semi-major axis of 1.136364mm and a semi-minor axis of 0.2840909mm are considered.
For the beam-to-beam contact formulation, a circular cross-section with a radius of 0.2840909mm is assumed. It
is important to note that the circular cross-section is used only to model the contact interaction while the structural
properties are kept the same in both models. To model the very low bending stiffness of the textile, a reduction
factor of 10−1 is applied to the lower moment of inertia. In this example, all simulations are performed with six
yarns in each direction, an in-plane length of 40.90909mm, an in-plane spacing between yarns of 4.54545mm,
and an out-of-plane spacing between yarns surfaces of 0.11364mm.

In all surface-to-surface simulations a penalty parameter of ε = 3.5E5N/m is adopted as in [2]. However,
in all beam-to-beam contact simulations a normal parameter of ε = 1.5E6N/m is adopted. All simulations are
dynamically performed with Newmark parameters β = 0.3 and γ = 0.5 [21]. A boundary condition with fixed
displacements and free rotation is assumed at the end points of all yarns.

Experimental and modeling results for k = 1, k = 2, and k = 0.5 are presented in Figure 3. In this figure,
the experimental results indicated as ”Experimental” are adapted from [1], the surface-to-surface model results
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indicated as ”Surface” are adapted from [2], and the beam-to-beam model results are calculated and indicated as
”Spline”. The results from Figure 3a show very similar responses between the ”Surface” and ”Spline” models.
These results are, however, slightly “delayed” when compared to the experimental. This behavior is a side effect
triggered by the out-of-plane spacing as observed in [2].
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Figure 3. Biaxial tension results, ”Experimental” in black from [1], ”Surface” in blue from [2], and ”Spline” in red
from the spline-based contact formulation.

The results for k = 2 and k = 0.5 are respectively presented in Figures 3b and 3c. These figures show
quite distinct mechanical behaviors from the “Surface” and the “Spline” models. By analyzing these models it was
possible to observe that these differences are caused by the contact elements definition. In the “Spline” formulation
the contact elements are defined according to a C1 curve that is not interpolatory to the structural nodes. In the
“Surface” formulation, however, the contact elements centroid is defined exactly as the beam axis. The mechanical
response of the “Spline” model is, however, qualitatively similar to the experimental results from [1].

The normal contact forces from the “Spline” model and the “Surfaces” model [2] are presented in Figure 4.
These figures show less normal contact forces with higher magnitude in the “Spline” model when compared to
the “Surfaces” model. These results highlight two important modeling differences. The first difference is in
the cross-sections used for defining the contact elements. In the “Spline” formulation circular cross-sections are
adopted while in the “Surface” formulation elliptical cross-sections are considered. This difference leads to single
forces at the contact regions as observed in 4b. The second difference is in the normal penalties adopted. In the
“Spline” model a higher normal penalty is assumed when compared to the “Surface” model. The difference in the
normal penalties is necessary since some multiple contacts are reduced to single-contact interactions. Moreover,
the existence of single-contact interactions can be advantageous to implement experimentally-based interface laws.

(a) Surface-to-surface contact formu-
lation. Extracted from [2].

(b) Spline-based contact formulation.

Figure 4. Normal contact forces obtained from the biaxial modeling of a glass fabric plain weave for k = 1.

6 Conclusions

This work showed that it is possible to model the textiles’ mechanical behavior under biaxial tension by com-
bining a structural beam theory and a contact formulation. The surface-to-surface and the beam-to-beam contact
formulations were able to reproduce the plain weave glass fabric mechanical response qualitatively. The single-
contact interaction pattern observed in the beam-to-beam formulation can be seen as an advantage to implementing
experimentally-based interface laws.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023



C. J. Faccio Júnior, A. Gay Neto, P. Wriggers

Acknowledgements. The authors would like to acknowledge the National Council for Scientific and Technological
Development (CNPq) under the grants 168927/2018-7 and 304321/2021-4, and the São Paulo Research Foundation
(FAPESP) under the grant 2020/13362-1.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] K. Buet-Gautier and P. Boisse. Experimental analysis and modeling of biaxial mechanical behavior of woven
composite reinforcements. Experimental Mechanics, vol. 41, n. 3, pp. 260–269, 2001.
[2] C. J. Faccio Júnior and A. Gay Neto. Challenges in representing the biaxial mechanical behavior of woven
fabrics modeled by beam finite elements with contact. Composite Structures, vol. 257, pp. 113330, 2021.
[3] C. J. Faccio Júnior, A. Gay Neto, and P. Wriggers. Spline-based smooth beam-to-beam contact model. Com-
putational Mechanics, 2023.
[4] A. Konyukhov and K. Schweizerhof. Geometrically exact covariant approach for contact between curves.
Computer Methods in Applied Mechanics and Engineering, vol. 199, n. 37-40, pp. 2510–2531, 2010.
[5] C. Meier, W. A. Wall, and A. Popp. A unified approach for beam-to-beam contact. Computer Methods in
Applied Mechanics and Engineering, vol. 315, pp. 972–1010, 2017.
[6] A. Gay Neto, P. M. Pimenta, and P. Wriggers. A master-surface to master-surface formulation for beam to
beam contact. Part I: Frictionless interaction. Computer Methods in Applied Mechanics and Engineering, vol. 303,
pp. 400–429, 2016.
[7] A. Gay Neto, P. M. Pimenta, and P. Wriggers. A master-surface to master-surface formulation for beam to
beam contact. part ii: Frictional interaction. Computer Methods in Applied Mechanics and Engineering, vol. 319,
pp. 146–174, 2017.
[8] C. J. Faccio Júnior, A. Gay Neto, and P. Wriggers. Numerical strategy for solving general C1 -continuous
beam-to-beam contact problems (under review). International Journal for Numerical Methods in Engineering,
2024.
[9] A. Gay Neto and P. Wriggers. Numerical method for solution of pointwise contact between surfaces. Computer
Methods in Applied Mechanics and Engineering, vol. 365, 2020.
[10] L. Piegl and W. Tiller. The NURBS book, volume 35 of Monographs in Visual Communication. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1997.
[11] J. C. Simo. A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer
Methods in Applied Mechanics and Engineering, vol. 49, n. 1, pp. 55–70, 1985.
[12] J. C. Simo and L. Vu-Quoc. A three-dimensional finite-strain rod model. part II: Computational aspects.
Computer Methods in Applied Mechanics and Engineering, vol. 58, n. 1, pp. 79–116, 1986.
[13] J. C. Simo and L. Vu-Quoc. A Geometrically-exact rod model incorporating shear and torsion-warping
deformation. International Journal of Solids and Structures, vol. 27, n. 3, pp. 371–393, 1991.
[14] P. M. Pimenta and T. Yojo. Geometrically exact analysis of spatial frames. Applied Mechanics Reviews, vol.
46, n. 11, pp. S118–S128, 1993.
[15] P. M. Pimenta and E. M. B. Campello. Geometrically nonlinear analysis of thin-walled space frames. In
Proceedings of the Second European Conference on Computational Mechanics, II ECCM, 2001.
[16] T. Yojo. Análise Não-Linear Geometricamente Exata de Pórticos Espaciais. PhD thesis, 1993.
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