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Abstract. Wood has great potential as a structural material with excellent strength, lightweight, thermal insulation,
and acoustical properties. However, its hierarchical nature and complexity represent a challenge in wood structure’s
design and manufacture. Homogenization can be a helpful tool for understanding wood behavior, encouraging
wood usage as a structural material for new applications. The homogenization method calculates the effective
properties of a material with many heterogeneities, represented as a base cell that repeats itself over the continuum.
This base cell is called Representative Element volume (RVE), a volume with all the information necessary to
describe the geometry of the different phases and the local material properties. This work uses a displacement-
based approach with Finite Element Method (FEM) to calculate six boundary conditions applied over the RVE,
where each boundary condition relates to a different stiffness matrix component. The result is a homogenized
material at the macroscale, considering the mechanical properties of each phase and its distribution over the RVE.
This work identifies the most important variables for each scale and discusses its influence over the effective
properties. The homogenization method allows for a better understanding of the different variables that influence
the mechanical properties of wood at each scale.
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1 Introduction

Wood is a natural material sustainable for the environment, representing a significant advantage for the con-
struction industry nowadays. Its use as a structural material has increased given the necessity for reducing carbon
footprints, increasing energy and water security concerns, and the desire for sustainable industrial growth [1]. De-
spite these benefits, there are certain disadvantages associated with natural materials usage. These materials are
usually expensive due to their limited availability, and their supply and quality can vary with climatic conditions
[2]. Additionally, its mechanical properties can significantly vary across wood species and with variables such as
moisture, density, and microstructure. Understanding wood’s hierarchical nature can open alternatives to create
new cellular materials that can supply that demand or even increase wood performance in the future.

Micromechanical models for wood deformation and strength are classified into three groups: cellular models,
continuum micromechanics, and homogenization-based methods, which consider wood as a composite [3]. Several
works have considered only the micro-scale, such as Naik and Fronk [4], which used a finite element model to
determine the cell wall properties and the cellulose volume fraction influence. Qing and Mishnaevsky [5] also
employed multiscale homogenization to model the moisture transport in wood and the moisture content effect over
the cell wall elastic properties.

The relationship between the cell wall geometry and mechanical properties was considered by Sjölund et al.
[6], showing the effect of the cell shape and cell wall properties on the wood’s effective rigidity. Qing and Mish-
naevsky [7] extended the same analysis for the meso scale. Recently the computational approach has gained
popularity by expanding the analysis to every scale. Saavedra Flores et al. [8]-[9] and Rojas Vega et al. [10] con-
sidered this approach to determine the mechanical and thermomechanical properties of timber. In this work, the
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homogenization method is also applied sequentially to determine the final properties at the macro-scale.

2 Homogenization Method Implementation

The homogenization theory is an alternative approach to finding the effective properties of a material with a
large number of heterogeneities. This approach reduces the problem complexity by replacing the heterogeneous
material with a homogenous one, with the homogenized property. Homogenization theory has applications in
physics and engineering with multiple approaches available. The formulation considered in this work uses the RVE
(Representative Volume Element) approach with appropriate boundary conditions to find the equivalent elastic
tensor for the homogenous material, as explained in the work of J.Yvonnet [11]. An RVE is a volume where the
geometry of the different phases and the local material properties are assumed to be known.

First it is consider that given a macroscopic strain ε is necessary to find a displacement field u(x) in the
domain Ω such that:

∇ · σ(u(x)) = 0 ∀x ∈ Ω, (1)

with

σ(u(x)) = C(x) : ε(u(x)), (2)

ε(u(x)) =
1

2
(∇u(x) +∇Tu(x)) (3)

and verifying

ε̄ =

∫
Ω

εdΩ. (4)

Where σ is the Cauchy stress tensor and C is the elasticity tensor. Equations (1) and 2 represent the equilib-
rium equation’s strong form and the stress-strain relationship respectively. Equation 3 is the linearized strain tensor
and eq.(4) states that the macroscopic strain applied over the RVE ε̄, must be equal to the strain volume average
over the domain.

According to J.Yvonnet [11], two boundary conditions satisfy eq.(4): kinematically uniform boundary con-
dition (KUBC) and periodic boundary conditions (PER). For our case, periodic boundary conditions were chosen
as the better alternative, and the displacement field u(x) takes the form:

u(x) = ε̄x+ ũ(x) ∀x ∈ Ω, (5)

Where ũ is a fluctuating displacement that is periodic on Ω. These periodic boundary conditions are imposed
by constraining the node displacement of two nodes a and b on opposite faces of the RVE using eq. (5), such as:

ui(x
a) = ε̄ijx

a
j + ũi(x

a)

ui(x
b) = ε̄ijx

b
j + ũi(x

b)
(6)

Given that the fluctuation is periodic ui(x
a) = ui(x

b) and using eq. (6), it is possible to establish the
boundary conditions for the contour nodes as follows:
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ui(x
a)− ui(x

b) = ε̄ij(x
a
j − xb

j) (7)

Once the appropriate boundary conditions are established, the tensor C can be calculated. According to
Barbero [12], the relationship between average stress and strain in the homogeneous composite material can be
written as:

σ̄ij = Cijklε̄ij (8)

By choosing a unit value for the applied strain and considering the periodic conditions established in eq. (8),
it is possible to compute the elastic matrix column by column:

Cijkl = σ̄ij =
1

V

∫
V

σij(x1, x2, x3) with ε̄ij = 1 (9)

Wood is an orthotropic material, so six elastic models are necessary to compute all the values in C for the 3D
case, corresponding to the six possible strains that could be applied over the RVE: ε̄11, ε̄22, ε̄33, ε̄12, ε̄13 and ε̄23.
When a strain condition is imposed, the strains in the other directions must be zero.

The algorithm for imposing the periodic boundary conditions over the RVE is taken from Barbero [12] and
adapted to Python using the interactive mode Pyansys [13] for each FEM analysis. The integral in eq. (9) can
also be calculated using Pyansys to obtain the RVE average stress. The homogenization implementation considers
three main stages: the RVE modeling according to each phase distribution and its mechanical properties. With this
data, the periodic boundary conditions are applied on opposite faces of the RVE for each load case. Once the six
FEM analyses are completed, it is possible to compute the matrix C. The homogenized material properties can be
easily calculated with the elastic tensor.

3 Multiscale Wood Homogenization

Wood species are classified into two main groups: softwoods, or coniferous trees, such as pine, cedar, and
spruce, and hardwoods, such as balsa, beech, maple, and oak. The mechanical properties between categories can
vary considerably, given fundamental differences in density and microstructural arrangements.

Figure 1. Discretized Representative Volumes for the micro, macro, and meso scales.

Many works in the literature examine softwood structures at different scales and their influence on their
mechanical properties. To extend the analysis for hardwoods, Malek and Gibson [14] work is considered here as
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a reference for the RVE geometry and mechanical properties. The model was simplified from five scales to only
three to reduce the analysis’s complexity. Figure 1 shows the different phases and their distribution on each scale.

The microscale involves three materials: cellulose, hemicellulose, and lignin, with the mechanical properties
presented in Table 1. The RVE has a cellulose core covered with a matrix of lignin and hemicellulose randomly
arranged. At the micro-scale, the RVE has a rectangular cross-section of 9 nm x 12 nm and a length of 20
nm. These three components in the microfibril vary their proportions according to the cell wall material under
consideration, as seen in Table 2. The wood cell wall is modeled as a symmetric seven-layer composite with
one compound middle layer (CML) and six secondary walls (S1, S2, and S3) [14]. Therefore, the output data
for the first homogenization step results in the mechanical properties of these four cell wall layer materials. The
microfibrils in each layer also have an orientation concerning the longitudinal axes called the microfibril angle
(MFA). Microfibril angles considered for every cell wall material at the meso-scale can be seen in Table 2.

Table 1. Elastic constants of cellulose, lignin and hemicellulose used in the micro-scale [14]

Material E1 E2 E3 G12 G13 G23 v12 v13 v23

Cellulose 111 GPa 24.6 GPa 7.51 GPa 3.43 GPa 6.85 GPa 3.23 GPa 0.11 0.15 0.40
Hemicellulose 9 GPa 4.5 GPa 4.5 GPa 2.25 GPa 2.25 GPa 1.67 GPa 0.35 0.35 0.35

Lignin 5.68 GPa 2.06 GPa 0.38

The second homogenization step includes two different RVEs: fibers and rays. Figure 1 illustrates this,
showing fibers and rays represented by a hexagonal and rectangular shape, respectively. The cell wall thickness for
individual layers CM, S1, S2, and S3 is adjusted depending on the volumes assigned in Table 2. Finally, the last
homogenization step is at the macro scale with a unit cell composed of rays and fibers. The RVE is a rectangular
prism with a width=382 µm, height=320.8 µm, and length=251 µm.

Table 2. Cell wall composition data used as input on the meso-scale [14]

Layer Volume Cellulose Hemicellulose Lignin MFA

S1 8 % 45% 35% 20% 70°
S2 72.67 % 50% 27% 23% 1.4°
S3 10.67 % 35 % 30 % 35 % -70°

CML/2 8.66 3% 35% 62% random

To validate the homogenization procedure, the results for each stage were compared with the results reported
by Malek and Gibson [14], finding good coincidences with the expected results and obtaining an error of less than
15 % for the Young Modulus EL overall. At each length scale, the constituents were assumed to be perfectly
bonded and to remain linear elastic during loading.

4 Sensitivity Analysis

The hierarchical model proposed for hardwoods can be used to evaluate the Young Modulus EL variability,
with different parameters at every scale. At the microscale, the chosen variables are the volume fraction of cellulose
fc and hemicellulose fh. The lignin percentage is adjusted accordingly to obtain the properties of layer S2. The
S2 layer has a relevant effect on the cell wall stiffness, being the thickest layer within the wall, with almost 80%
volume [2]. Therefore, only variations in S2 will be studied as seen in previous works [9]. The remaining layers
CML, S1, and S2 will be unaltered. Figure 2b illustrates the RVE at the micro-scale with different volume fractions
of lignin, hemicellulose, and cellulose. The code adapts to the input variables fc and fh, appropriately changing
the material distribution. For this analysis at the micro-scale, the parameters of the subsequent homogenization
steps remain constant.

The most important parameters at the meso-scale are the thickness t, the microfibril angle MFA, and fiber
and ray cells dimensions denoted by h and l (see Fig. 2a). However, in the rectangular RVE associated with
wood rays, h, and l are fixed at 18 µm, given that rays don’t show significant variations in geometry with overall
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Figure 2. RVE variations for the sensitivity analysis. (a) Geometrical parameters at the meso-scale. (b) RVEs with
different values of fc and fh. (c) RVEs with different t and h combinations

density. Consequently, t and MFA are the only variables considered for the ray’s RVE. For fibers, the influence
of parameters h and l is explored, with a variation range between 3 µm and 30 µm, as observed by Malek and
Gibson [14]. The microfibril angle will vary between 0° and 20° and the thickness between 0.3 µm and 2.2
µm, as suggested in Shishkina et al. [2] work. Figure 2 illustrates the variations in the hexagonal RVE with the
chosen parameters. By increasing the cell wall thickness and reducing h and l, more dense structures appeared,
considering cell repetition over the continuum. Finally, the only variable available at the macro scale is the fiber
volume fraction ff .

(a) (b)

Figure 3. Longitudinal Young’s modulus variation with parameters: (a) fc and fh. (b) h and t.

The micro-scale variable’s influence on the longitudinal Young Modulus EL is depicted in Fig.3a. In this
case, the volume fractions fc and fh vary between 10 and 80% even though the variables at the meso and macro
scale remain constant (MFA = 1.4°, t = 0.9µm, h = l = 8µm, ff = 80%). Under these conditions, EL varies
between 1.57 and 7.51 GPa. In addition, fc determines the increase in EL, while fh is not a decisive factor. Hence,
an increase in the cellulose volume fraction in the microfiber RVE can increase the wood’s mechanical properties
on the macroscale. The point in Fig. 2a represents the values fc and fh commonly used for the S2 layer in balsa.
A minor increase in properties is noticeable for higher values of fh, but this effect is minimal compared to the gain
associated with cellulose augmentation.
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Figure 4. Longitudinal Young’s modulus variation with parameters MFA and ff at the macro scale.

Figure 3b shows the result for variations in the meso-scale, specifically the parameters h and t. The hexagonal
cell geometry related to fibers is often regular, so h=l was considered for all cases. Again, the reference values for
h and t represent one point on top of the surface. The Young modulus EL varies non-linearly with the parameter h
and decreases as h becomes larger. In terms of thickness, the relationship is linear, and the property increases with
high values for t. The longitudinal Young modulus can vary between 0.678 and 20.98 GPa for the two variables
examined. Malek and Gibson [14] work presented this behavior at the meso-scale level.

Finally, the microfiber angle influence and the fiber volume fraction at the macroscale are evaluated and shown
in Fig. 4. The relationship between MFA and Young’s modulus EL is also non-linear, decreasing in value as the
MFA angle increases. Moreover, raising the fibers’ volume fraction results in higher values for EL, a behavior
already observed in Shishkina et al. [2] models. However, this increase is lower than the gains associated with
MFA reduction. Young’s modulus EL fluctuates between 1.4 and 5.14 GPa for all the combinations considered,
while other variables remain constant (t = 0.9 µm, h = l = 8 µm, fc = 50 %, fh = 27%). These results showed that
the microfibril angle MFA and the parameters related to wood density, h, l, and t, have a higher influence over the
longitudinal Young modulus, a behavior already explored by Lloyd [15].

5 Conclusions

The homogenization method represents a great alternative to predict the wood’s mechanical properties at
every scale according to its specific characteristics. The multiscale model proposed for hardwoods involved three
homogenization steps in which input parameters vary across all scales. The algorithm reshapes the RVE geometry
according to the input values required to obtain the new mechanical properties.

The most relevant parameters for wood’s high longitudinal Young’s modulus at the macroscale are the mi-
crofiber angle MFA and the variables t, h, and l related to the fiber’s hexagonal configuration. The cellulose fraction
at the microscale is also crucial to increasing the mechanical properties studied, given that highly influences the
layer’s stiffness at the mesoscale. Analyzing the different variables’ influence on wood mechanical properties at the
macro-scale allows the exploration of new materials inspired by wood that can potentially meet its high demand.
Additionally, it can help improve the characteristics of existing wood species by favoring the desirable parameters
already identified.
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