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Abstract. We present a new fully computable a posteriori error estimates for the primal hybrid formulation ap-
plied to Poisson’s problem. The estimates are based on the reconstruction of a continuous potential field and an
equilibrated flux, which are computed using the potential and Lagrange multipliers solutions. The potential re-
construction is the result of orthogonally projecting the potential solution onto a function over the mesh skeleton,
smoothing this function into a continuous trace, and solving local pure Dirchlet problems. This procedure for re-
constructing the potential were used to develop error estimates for the mixed formulation in [1, 2]. The equilibrated
flux is obtained from solving local mixed problems using Lagrange multipliers at a pure Neumann boundary con-
dition. This technique is similar to the flux recovery strategy based on the Arnold–Boffi–Falk spaces described in
[3], but for the divergent compatible pair of spaces described in [4]. An adaptive refinement strategy is developed,
and numerical results illustrate the efficiency of the error estimates.
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1 Introduction

A posteriori error estimates provide an upper bound for the approximation error using the solution of the
finite element formulation. In the literature, a posteriori estimates can be found for H1-conforming [5] and non-
conforming [2] methods. We propose new a posteriori error estimates applied to the primal hybrid formulation
of Poisson’s equation. The estimates are based on the Generalized Prager–Synge (GPS) identity [6], which ex-
tends Prager-Synge identity to nonconforming methods, and on the reconstruction of a continuous potential and
equilibrated flux fields. The mathematical development relies on Helmholtz decomposition of the error.

The reconstruction of the potential field is based on an element-wise L2 orthogonal projection of the numer-
ical solution, and the field continuity is ensured by using a continuous function defined on the mesh skeleton as a
Dirchlet boundary condition. A similar reconstruction method is described in [2], but the primal hybrid approxi-
mation space for the potential variable requires no uplifting. An equilibrated flux is built by solving element-wise
problems for which the Lagrange multipliers numerical solution is used as a boundary condition. A similar tech-
nique for reconstructing the flux variable is described in [3].

An adaptive refinement strategy is proposed based on the error estimates and a mesh smoothing procedure.
The quality of the error estimates is evaluated for a numerical problem with an irregular solution.
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2 Notations and preliminaries

Consider the model problem of finding a potential u defined over an open convex domain Ω ∈ R2. The
domain is bounded by the polygonal boundaries ∂ΩD and ∂ΩN , and the following relations


∇ · (−K∇u) = f, in Ω

u = gN , on ∂ΩD

−K∇u · n = gD, on ∂ΩN

, (1)

hold. Where K is a positive definite second-order tensor and n is the normal unit vector pointing outwards of Ω.
Let L2(Ω) = {f ∈ R|

∫
Ω
f2 < ∞} be the space of square integrable functions, which is equipped

with the inner product (v1, v2) =
∫
Ω
v1 v2 dΩ for any v1, v2 ∈ L2(Ω) and the norm ∥f∥ =

√
(f, f). Let

H1(Ω) = {v ∈ L2(Ω)|D1v ∈ L2(Ω)} be the space of once differentiable functions, which is equipped with
the semi-norm |v|1 = ∥D1v∥ and the norm ∥v∥1 = ∥v∥+ |v|1. Set a subspace of admissible functions H1

ξ (Ω) =

{v ∈ H1(Ω) s. t. v|∂ΩD
= ξ}. A variational approximation for the model problem eq. (1) can be developed by

supposing that the solution belongs to a sufficiently smooth space, by multiplying both sides by a test function,
and by applying the chain rule. The standard variational formulation for the model problem consists of finding
u ∈ H1(Ω) satisfying

(K∇u,∇v) = (f, v) + ⟨gN , v⟩∂ΩN
, ∀v ∈ H1

0 (Ω). (2)

Consider partitions Th = {K} of the domain Ω comprising open, convex, piecewise disjoint and juxtaposed
quadrilateral elements K, and let T = {Th} be a set containing some of these partitions. The set of all edges
E ∈ ∂K for all K ∈ Th is the mesh skeleton Eh, which can be decomposed into internal E̊h and boundary Eh,∂
skeletons. The maximum element diameter within each partition is given by h = max

K∈Th

hK .

The standard formulation can be posed in terms of finite elements K, resulting into a continuous potential
field uh. The primal hybrid [7] variational formulation for the model problem can be developed by breaking the
inter-element continuity of the solution uh and by imposing a Lagrange multiplier λh(s), s ∈ Eh representing the
normal component of the flux λh ≈ −K∇uh · nK at the elements interfaces. The field nK corresponds to the
unit normal vector points outwards of the element K. Before stating the primal hybrid formulation, additional
definitions are required.

Let H1(Th) = {vh ∈ L2(Ω) | vh|K ∈ H1(Th), ∀K ∈ Th} be the broken Hilbert space and consider the set
of admissible functions H1

ξh
(Th) = {vh ∈ H1(Th)| − K∇vh|∂ΩN

· nK = ξh}. The space of vector functions
with square-integrable weak divergences is denoted by H(div; Ω) = {v ∈ [L2(Ω)]2 | ∇ · v ∈ L2(Ω)} and a
subset of admissible vector functions by Hξ(div; Ω) = {v ∈ H(div; Ω) s. t. v · n|∂ΩN

= ξ}. The space of
Lagrange multipliers Λ(Eh) represents the trace of functions in H(div; Ω) over the skeleton Eh, and the subspace
of admissible functions Λξ(Eh) corresponds to the trace of functions in Hξ(div; Ω).

Let P̂n(s) : R → R be a space of polynomials of order n defined over a reference line segment Ê. The space
of bi-dimensional polynomials is denoted by Q̂n1,n2

(x) : {x ∈ R2 |vh ∈ Q̂n1,n2
|vh · êi ∈ Pni

, i = {1, 2}}
or simply by Q̂n when n1 = n2, and are defined over a reference quadrilateral element K̂. The coordinate
transformation from a reference (̂·) to a deformed (·) configuration can be achieved with an appropriate mapping.
Now the finite element spaces can be set. Consider the spaces Un

h (Th) = {vh ∈ L2(Ω) s. t. vh|K ∈ Qn(K)},
V n
h (Ω) = {vh ∈ H1(Ω) s. t. vh|K ∈ Qn(K)} and Λn

h(Eh) = {µh ∈ Λ(Eh) s. t. µh|E ∈ Pn}, and the corre-
sponding subspaces Un

h,ξ(Th) ⊂ H1
ξ (Th), V n

h,ξ(Ω) ⊂ H1
ξ (Ω) and Λn

h,ξ(Eh) ⊂ Λξ(Eh).
The primal hybrid finite element formulation consists of finding (λh, uh) ∈ Λ1

h,gh,N
(Eh) × U3

h(Th) for all
(µh, vh) ∈ Λ1

h,0(Eh)× U3
h(Th), such that∑

K∈Th

[(K∇uh,∇vh)K + ⟨λh, vh⟩∂K ] =
∑

K∈Th

(fh, vh)K∑
K∈Th

⟨uh, µh⟩∂K =
∑

K∈Th

⟨gh,N , µh⟩∂K∩∂ΩD
,

(3)

where gh,N , gh,D and fh are the local L2-orthogonal projections of functions gN , gD and f over their respective
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supports and with respect to the corresponding finite element spaces. The polynomial basis are constructed using
hierarchical shape functions. A systematic procedure for constructing hierarchical basis can be found in [8].

A finite element space for vector functions is also required. The choice M̂
k,n

h = {v ∈ Qk+n+1,k ×
Qk,k+n+1} has some interesting properties. For a function v̂ ∈ M̂

k,n

h (K̂), its divergent belongs to to a complete
polynomial space ∇· v̂ ∈ Ûk+n

h (K̂) and its normal component over an element boundary is a polynomial of order

k, v̂ · n̂K ∈ Λk
h(Êh). The parametric space M̂

k,n

h can be mapped to the deformed configuration Mk,n
h through

Piola’s transformation. The definition of the finite element space of admissible functions Mk,n
h,ξ (Ω) ⊂ Hξ(div; Ω)

can be easily deducted. Therefore, the family of space pairs Mk,n
h × Uk+n

h (Th) fulfills De Rham’s condition and
coincides with the classical Raviart-Thomas space RTk for n = 0. More details about constructing such spaces
can be found in [9].

3 A posteriori error estimates

The development of the a posteriori error estimates for the primal hybrid formulation is based on the Gen-
eralized Prager Synge Inequality (GPS) [6]. Let Σf (Ω) = {τ ∈ H(div; Ω) | ∇ · τ = f, and τ · n|∂ΩN

= gN}
be the space of equilibrated fluxes. The solution of eq. (1) u ∈ H1

gD (Ω) is related to a piecewise continuous field
w ∈ H1(Th), an equilibrated flux τ ∈ Σf (Ω) and a continuous field v ∈ H1

gD (Ω) through Theorem 1.

Theorem 1. Let u ∈ H1
gD (Ω) be the solution of eq. (1). In two dimensions, for all w ∈ H1(Th), we have

∥K1/2∇(u− w)∥2 = inf
τ∈Σf (Ω)

∥K−1/2τ +K1/2∇w∥2 + inf
v∈H1

gD
(Ω)

∥K1/2∇(v − w)∥2.

The error estimates are derived by applying Helmholtz decomposition, by using the GPS identity described
in Theorem 1, and by selecting appropriate reconstruction fields. Let t ∈ M1,2

h ⊂ Σf (Ω) and sh ∈ V 3
h,gh,D

(Ω) ⊂
H1

gh,D
(Ω) be a reconstructed flux and potential, respectively, which are built from the solutions of eq. (3). A

superior bound for the error is described in Theorem 2.

Theorem 2. Let u be the solution of eq. (2), and uh ∈ U3
h(Th) be the solution of the primal hybrid approximation

(3). Let sh ∈ V 3
h,gh,D

(Ω) represent the potential reconstruction, and let th ∈ M1,2
h be the reconstructed flux. The

following upper bound holds:

∥K1/2∇(u− uh)∥2 ≤


 ∑

E∈∂ΩN

η2
E,B

1/2

+

 ∑
K∈Th

(ηK,R + ηK,f )
2

1/2


2

+
∑

K∈Th

η2
K,p,

where

ηK,R =
C

1/2
P hK

C
1/2
K,K

∥f −∇ · th∥K , ηK,f = ∥K−1/2(th +K∇uh)∥K ,

ηK,p = ∥K1/2∇(sh − uh)∥K and ηE,B = ξ1/2(K, CP , Ct)h
1/2
K ∥g − gh∥E .

where CP = 1/π2 (see [10] and references therein) is the constant from the Poincaré inequality, CK,K is the
smallest eigenvalue of K on element K, Ct is the trace inequality constant and

ξ(K, CP , Ct) := Ct

(
CP

C
1/2
K,K

+
C

1/2
P

C
3/4
K,K

)
.

Potential reconstruction: The solution uh of the primal hybrid problem (eq. (3)) is in general discontinuous
along element interfaces, and the error estimates described in Theorem 2 require a continuous potential field. Let
sKh ∈ V 3

h (K) be the potential field satisfying the following element-wise problem,

(K∇sKh ,∇vh)K = (K∇uK
h ,∇vh)K , (4)

sKh = γh|∂K on ∂K.

for all vh ∈ V 3
h,0(K), where γh ∈ ΠE∈Eh

P3(E) is a continuous function built from piece-wise polynomials
on each mesh skeleton’s edge, and Π(.) is defined in the sense of the Cartesian product. The continuous field
sh ∈ V 3

h,gh,D
(Ω) follows from sh|K = sKh .
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The construction of the continuous function γh is based on the work of [2]. Let γ(0)
h be a function with

support over the mesh skeleton, computed as follows.

γ
(0)
h |E =


∫
E

ω+u+
h + ω−u−

h

ω+ + ω− − γ
(0)
h ds = 0 for E ∈ E̊h;

γ
(0)
h = uh for E ∈ Eh,∂ ,

(5)

where the ω+/− corresponds to the maximum eigenvalue of tensor K for element K+/−.

Function γ
(0)
h is discontinuous at the mesh skeleton nodes. The nodal values of γ(0)

h are updated by computing
a weighted nodal average, resulting in the continuous field γh. Figure 1 illustrates the difference between the
solution uh and the reconstructed potential sh.

(a) uh (b) sh

Figure 1. Solution uh (left) and reconstructed potential sh (right) and .

Flux reconstruction: An element-wise equilibrated flux tKh ∈ Σf (K) follows from the problem: find (tKh , pKh ) ∈
M1,3

h,λh
(K)× V 3

h (K) satisfying

(K−1tKh ,v)K − (pKh ,∇ · v)K = 0 ,

−(∇ · tKh , w)K = −(f, w)K , (6)

for all (v, w) ∈ M1,3
h,0(K) × V 3

h (K). The equilibrated flux th ∈ Σf (Ω) is obtained by restricting its value to the
element-wise solutions, th|K = tKh .

4 Adaptive h-refinement strategy

We propose an adaptive h-refinement strategy based on the error estimates. A mesh T (0)
h is chosen over which

the fields u(0)
h , λ

(0)
h are computed through eq. (3). The error estimates are computed according to Theorem 2, and

the following element-wise error estimator is calculated[
ηKestim

]2
= [ηEN ,B + ηK,R + ηK,f ]

2 + η2K,p.

where EN = ∂K ∩ ∂ΩN . The maximum error per element ηKmax = max
K∈Eh

ηKestim is computed and elements for

which ηKestim > τηKmax are marked for refinement. This procedure is illustrated in Figure 2.

After refining the elements with expressive errors, two mesh smoothing procedure are used. Elements with
two-levels finer neighbours and elements encircled with at least three finer neighbours are also refined. The mesh
smoothing procedure is illustrated in Figure 3. The adaptive strategy is repeated until a prescribed number of
refinement steps is reached.

5 Numerical results

Problem with contrasting tensors K: To illustrate the efficiency of the error estimates, the proposed indexes
are evaluated over a problem with contrasting permeability tensors. The problem consists of finding u satisfying
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ηestim(K) > τ max
K∈Th

ηestim(K)

Figure 2. Marking elements for adaptive refinement (left) and mesh after refinement (right).

RE
FI
NE

RE
FI
NE

Figure 3. Refinement of elements with a two-levels finer neighbour (left) and elements encircled by finer elements
(right).

eq. (1) over Ω = [−1, 1]× [−1, 1] with

u = gD = rλ {α cos [λ arctan (θ)] + β sin [λ arctan (θ)]}

over ∂Ω = ∂ΩD, where r is the Euclidean distance from the origin, and the coefficients α, β and λ are found by
solving Steklov’s problem for a permeability tensor K = 5I on odd quadrants and K = I on even quadrants.
Figure 4 illustrates this problem solution and its gradient.

u ∥K∇u∥

Figure 4. Problem with contrasting tensors K: the solution u on the left and the magnitude of the gradient ∥K∇u∥.
on the right

A family of partitions Tu = {Th} with h ∈ {1, 1/2, 1/4, 1/8, 1/16, 1/32} of uniformly refined meshes
is selected. The estimated ηestim and exact errors ηexact for this family of partitions is shown in Figure The
convergence graph of the estimated and exact errors is documented in Figure 5. The estimated error converges in
h at the same rate as the exact error, showing an an asymptotically exact convergence pattern.

A second family of partitions Ta = {T (i)
h } is built from applying nineteen adaptive refinement steps to an
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Figure 5. Problem with contrasting tensors K: Histories of convergence of the exact ηex and estimated errors
ηestim.

initial mesh T (0)
h = Th=1 and a threshold τ = 0.60. On the left side of Figure 6, the estimated errors for the

adaptive and uniform refinement strategies are shown. For the adaptive strategy, the estimated errors are up to two
orders of magnitude lower than for the uniform refinement. The effectivity index describes the accuracy of the
error estimates, and are shown on the right side of the figure. The indexes for the adaptive strategy are closer to
one, exhibiting closer estimates to the exact errors.
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Figure 6. Problem with contrasting tensors K: On the left, the estimated errors for the uniform and adaptive
strategies. On the right, the effectivity index for each family of partitions.

The developed estimates also enable an assessment of the error per finite element, as shown in Figure 7. The
figure on left-most side corresponds to the adaptive refinement step 7, followed by steps 14 and 19, respectively. It
is clear that the strategy leads to smaller elements in the direction of the discontinuity, as intended.

step i = 7 step i = 14 step i = 19

Figure 7. Problem with contrasting tensors K: Estimated error per element for the three adaptive steps i ∈
{8, 13, 18}.
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6 Conclusions

This paper presents a posteriori error estimates for the finite element primal hybrid formulation of Poisson’s
equation. The estimates are based on the reconstruction of a continuous potential field and an equilibrated flux. An
adaptive h-refinement strategy based on the error estimates and a mesh smoothing procedure was proposed. The
quality of the estimate results and the refinement strategy was numerically verified over a problem with contrasting
permeability tensors, for which the gradient of the solution is irregular at the origin. The adaptive refinement
strategy showed errors up to two orders of magnitude lower than for the uniform refinement.
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