
Stability Analysis of Shells Using a NURBS-based Isogeometric Approach

Matheus Pascoal Martins de Sousa1, John Williams Ferreira de Souza1, Elias Saraiva Barroso1, Evandro Parente
Jr.1, João Batista Marques de Sousa Junior1.
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Abstract. Shells are structures sensitive to buckling due to their characteristic high slenderness. Thus, the evalu-
ation of buckling loads and the study of the post-buckling behavior are essential. Isogeometric analysis has been
widely used in analysis of shells, due to its ability to accurately represent the geometry of the structure regardless
of the discretization level and the simplicity of model refinement procedures. The aim of this work is to evaluate
the stability of shells through an isogeometric approach, considering large displacements and moderate rotations.
This formulation is based on the Reissner-Mindlin theory for thick shells and the degenerated continuum approach
using NURBS as basis functions. The proposed formulation is applied in the stability analysis of plates and shells,
where critical loads and equilibrium paths are evaluated and compared to solutions available in the literature or
obtained by the Finite Element Method.
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1 Introduction

Shells are curved surface structures whose thickness is much smaller than other dimensions. They are present
in several areas of engineering, being widely used in civil, aeronautical, mechanical, automotive, and naval struc-
tures. These structures are subject to collapse triggered by the loss of stability due to their characteristic high
slenderness. Thus, nonlinear analyzes are necessary, in which the consideration of large displacements is essential.

There are numerous analysis methods that can be used to model these problems, with Finite Element Method
(FEM) being currently the most used. However, due to the imperfections sensitivity presented in the mechanical
behavior of shells, Isogeometric Analysis (IGA) has become relevant due to its ability to accurately represent the
geometry of the problem regardless of the level of discretization considered, eliminating the error in the repre-
sentation of the geometry that exists in FEM. Additionally, the B-Splines and NURBS have a greater degree of
continuity than those normally used in FEM, which can make IGA have a faster convergence than FEM.

Research involving isogeometric analysis of shells are reported in the literature after the proposal of IGA
concept [1], where several formulations of isogeometric shells have been discussed in the context of linear and
nonlinear analyses. Formulations based in Kirchhoff-Love theory are developed in context of IGA, where analysis
models with C1 bases are easily obtainable, as in NURBS-based models [2]. Likewise, Reissner-Mindlin trans-
verse shear formulations are also studied. In this context, a formulation based on the degenerated solid approach
was initially proposed by Uhm and Youn [3] for T-Splines, which was later extended to a nonlinear formulation
for isogeometric analysis by Dornisch et al. [4], using precisely calculated director vectors for NURBS. Recent
research on isogeometric buckling analysis of complex shells with variable stiffness was done by Hao et al. [5].

In this work, a nonlinear NURBS-based isogeometric formulation is presented for the stability analysis of
shells, using the Reissner-Mindlin theory and the degenerated solid approach.

The rest of the paper is organized as follows. Section 2 introduces the degenerated solid approach. Section 3
describes the nonlinear isogeometric formulation. Section 4 presents some numerical examples used to assess the
efficiency of the present formulation. Finally, Section 5 expresses the concluding remarks of the study.
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2 Degenerated Solid Approach for Analysis of Shells

In the degenerated solid approach, the geometry of the shell is represented a point x of the mid-surface, by
the unit normal vector v3 and the thickness t in x. Thus, a point x within the shell is defined by:

x(ξ, η, ζ) = x(ξ, η) + ζ
t(ξ, η)

2
v3(ξ, η), (1)

where v3 = (l3, m3, n3)
T , −1 ≤ ξ ≤ +1, −1 ≤ η ≤ +1 are the parametric coordinates tangent to the shell

surface, and −1 ≤ ζ ≤ +1 is the parametric coordinate along the thickness.
In this work, a Total Lagrangian formulation [6] is used, which considers large displacements and moderate

rotations, but small strains. Stresses and strains are always evaluated in the initial configuration of the structure.
The displacements inside the model are given by:

u(ξ, η, ζ) = u(ξ, η) + ζ
t(ξ, η)

2
(−αv2(ξ, η) + β v1(ξ, η)) , (2)

where v1 = (l1, m1, n1)
T and v2 = (l2, m2, n2)

T are unit tangent director vectors, α and β are the rotations of
the normal vector in relation to axes v1 and v2. The director vectors v1, v2 and v3 are perpendicular to each other.
The Green-Lagrange strains, which have a linear term εεε0 and a quadratic term εεεL, within the shell are computed
from the displacement derivatives with respect to the Cartesian coordinates:

εεε =



εx

εy

εz

γxy

γxz

γyz


=



u,x

v,y

w,z

u,y + v,x

w,x + u,z

v,z + w,y


+

1

2



u2
,x + v2,x + w2

,x

u2
,y + v2,y + w2

,y

u2
,z + v2,z + w2

,z

2(u,x u,y + v,x v,y + w,x w,y)

2(u,x u,z + v,x v,z + w,x w,z)

2(u,y u,z + v,y v,z + w,y w,z)


= εεε0 + εεεL. (3)

The relationship between the Piola-Kirchhoff II stresses and the Green-Lagrange strains in the local system
is given by the generalized Hooke’s law [7]:

σ′ = C′ εεε′. (4)

The local system (x′, y′, z′), where the material properties of the shell are defined, is given by the director vectors
v1, v2, and v3. The material properties are transformed to the global system of the problem, where the strain-
displacement matrix is defined and the equilibrium of the structure is established. Strains in global system (εεε) are
related to local strains (εεε′) using the transformation matrix T [7]:

εεε′ = Tεεε. (5)

Moreover, the stresses and the constitutive matrix can be obtained in the global system in the same manner:

σ = TT σ′ ⇒ σ = Cεεε ⇒ C = TT C′ T. (6)

3 Isogeometric Formulation

A NURBS surface is defined by a given control net Pa(n × m), and knot vectors Ξ = [ξ1, ξ2, ..., ξn+p+1]
and Ω = [η1, η2, . . . , ηn+p+1] as:

S(ξ, η) =

np∑
a=1

Ra(ξ, η)Pa. (7)

where np is the number of control points and Ra(ξ, η) are the bivariate rational basis functions given by:

Ra(ξ, η) =
Ni,p(ξ)Nj,q(η)wij

n∑̂
i=1

m∑̂
j=1

Nî,p(ξ)Nĵ,q(η)wîĵ

=
Ni,p(ξ)Nj,q(η)wij

W (ξ, η)
, (8)
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where Ni,p(ξ) and Nj,q(η) are univariate B-Splines basis functions, wij is the control point weight, and W (ξ, η)
is the bivariate weighting function. It is worth noting that the global basis index a is related to tensor product basis
indexes (i, j) by:

a = m(i− 1) + j, i = 1, 2, . . . n, j = 1, 2, . . .m and np = mn. (9)

Using the degenerated solid approach, the shell mid-surface (x), normal vector (v3), and thickness (t) are
defined as:

x =

np∑
a=1

Ra xa, v3 =

np∑
a=1

Ra v3a, t =

np∑
a=1

Ra ta, (10)

where xa are the shell control points, v3a is a normalized director vector, and ta the thickness associated with
control point a. Substituting Eq. (10) in Eq. (1), the geometry of the NURBS shell element is written as:

x

y

z

 =

np∑
a=1

Ra


xa

ya

za

+

np∑
a=1

Ra ζ
ta
2


l3a

m3a

n3a

 . (11)

According to the isogeometric approach, the same basis functions used to describe the geometry are used to
approximate the displacement field within the shell:

u

v

w

 =

np∑
a=1

Ra


ua

va

wa

+

np∑
a=1

Ra ζ
ta
2


βa l1a − αa l2a

βa m1a − αa m2a

βa n1a − αa n2a

 , (12)

where αa and βa are independent rotations, around local axes v1a and v2a, associated with control points a and
perpendicular to each other and to v3a. The displacement field can be written in matrix form as:

u =


u

v

w

 =

np∑
a=1


Ra 0 0 g11 Ha g21 Ha

0 Ra 0 g12 Ha g22 Ha

0 0 Ra g13 Ha g23 Ha





ua

va

wa

αa

βa


=

np∑
a=1

Na ua = Nu, (13)

where

Ha = Ra ζ, (14)

g11 = −1

2
ta l2a, g12 = −1

2
ta m2a, g13 = −1

2
ta n2a, (15)

g21 =
1

2
ta l1a, g22 =

1

2
ta m1a and g23 =

1

2
ta n1a. (16)

Using Eqs. (3), (12), and (13), the relation between the strain vector within the shell (εεε) and the vector of
degrees of freedom (u) can be written as:

εεε = εεε0 + εεεL = Hβββ +
1

2
Aβββ = HGu+

1

2
AGu =

(
B0 +

1

2
BL

)
u = Bu, (17)

where

βββ =



u,x

u,y

u,z

v,x
...

w,z


=

np∑
a=1



Ra,x 0 0 g11 Ha,x g21 Ha,x

Ra,y 0 0 g11 Ha,y g21 Ha,y

Ra,z 0 0 g11 Ha,z g21 Ha,z

0 Ra,x 0 g12 Ha,x g22 Ha,x

...
...

...
...

...

0 0 Ra,z g13 Ha,z g23 Ha,z





ua

va

wa

αa

βa


=

np∑
a=1

Ga ua = Gu, (18)
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with
Ha,x = Ra,x ζ +Ra ζ,x, Ha,y = Ra,y ζ +Ra ζ,y and Ha,z = Ra,z ζ +Ra ζ,z. (19)

Due to the use of the degenerated solid approach, matrices H and A are the same ones of 3D continuum elements
[8].

According to Eqs. (17), (18) and (19), matrices G, B0 and BL depend on the the derivatives of the basis
functions Ra and ζ function with respect to the Cartesian coordinates (x, y, z). However, these functions are
defined in terms of parametric coordinates (ξ, η, ζ). In this work, the ζ coordinate is handled as an additional
shape function and the required derivatives with respect to the Cartesian coordinates are computed from:

Ra,x

Ra,y

Ra,z

 = J−1


Ra,ξ

Ra,η

0

 and


ζ,x

ζ,y

ζ,z

 = J−1


0

0

1

 , (20)

where the Jacobian matrix (J) is given by:

J =


∑

Ra,ξ

(
xa + ζ

ta
2
l3a

) ∑
Ra,ξ

(
ya + ζ

ta
2
m3a

) ∑
Ra,ξ

(
za + ζ

ta
2
n3a

)
∑

Ra,η

(
xa + ζ

ta
2
l3a

) ∑
Ra,η

(
ya + ζ

ta
2
m3a

) ∑
Ra,η

(
za + ζ

ta
2
n3a

)
∑

Ra
ta
2
l3a

∑
Ra

ta
2
m3a

∑
Ra

ta
2
n3a

 . (21)

3.1 Equilibrium equations

The static equilibrium equations of the model can be obtained using the Principle of Virtual Work:

δU = δWext ⇒
∫
V

δεεεTσ dV =

∫
V

δuTb dV +

∫
S

δuTq dS, (22)

where δu is the virtual displacement vector, δεεε is the virtual strain vector, and q and b are the surface and body
loads, respectively. This equation can be rewritten to include a residue r which represents the imbalance between
internal (g) and external forces (f ), and so, for displacement-independent loads, the nonlinear equilibrium can be
written as:

r(u, λ) = g(u)− λf , (23)

where:
g =

∫
V

B
T
σ dV, f =

∫
V

NT b dV +

∫
S

NT q dS, (24)

and λ is the load factor. The equation is solved in each step for r = 0 using an appropriate path-following method,
such as the Load Control, Displacements Control, or the Arc-Length Method, which are based on Newton-Raphson
method iterations [8].

The stiffness matrix is obtained by the differentiation of the internal forces vector:

KT =
∂g

∂u
= KE +KG, (25)

where the material stiffness matrix KE and the geometric stiffness matrix KG are given by:

KE =

∫
V

B
T
CB dV, KG =

∫
V

GT SG dV, (26)

where:

B = B0 +BL, S =


S 0 0

0 S 0

0 0 S

 , 0 =


0 0 0

0 0 0

0 0 0

 , S =


σxx τxy τxz

τxy σyy τyz

τxz τyz σzz

 . (27)

For a more efficient implementation, instead of computing the integrals in the entire volume, we perform the
Gaussian integration in the isogeometric element, defined by the knot spans in the parametric directions on the
shell surface. This is similar to what is performed in FEM for the assembly of the global stiffness matrix.

The presented isogeometric formulation was implemented in the open-source structural analysis software
FAST (Finite Element Analysis Tool), developed in C++ programming language and using the object-oriented
programming (OOP) paradigm.
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4 Numerical Examples

This section presents the results obtained using the presented isogeometric formulation for stability analysis
of shells. These results are compared with analytical and finite element solutions to validate the formulation and
its computer implementation. The effect of the numerical integration scheme is also assessed.

In degenerated shell approaches, director vectors are defined at node positions of the FEM model using the
geometry model. However, in NURBS-based approach, control points do not interpolate the geometry. Hence, it is
necessary to evaluate the corresponding directors at control points that define a suitable normal vector field on the
mid-surface of the shell (see Eq. (10)). Here, the normal vectors are obtained by linear regression of the normal
vectors computed at (m × n) samples points distributed uniformly over NURBS domain.

4.1 Example 1 - Buckling of a square plate under axial compression

This example deals with the buckling of a simply supported square plate. The plate is subjected to a compres-
sive load (Nx) uniformly distributed along the edge x = L. Figure 1a presents the material properties, geometric
data, boundary conditions, and loading.

L

Nx

u = w = 0

w = 0

w = 0

w = 0

E = 200·109

ν = 0.30

L = 2

t = 0.01

y

x

(a) Problem definition and 16× 16 cubic mesh. (b) Critical load Ncr convergence.

Figure 1. Buckling of a square plate.

Figure 1b presents the buckling loads computed for different cubic NURBS meshes using full (F) and reduced
(R) integration schemes. The reference buckling load (N cr) was computed using the classical solution for thin
plates [9]. The results show that the proposed formulation converges to values slightly lower (0.23%) than the
reference value, due to the use of the Reissner-Mindlin theory. The reduced integration scheme presents a better
accuracy, especially for coarse discretizations. However, both integration schemes converge to same same solution
under mesh refinement.

4.2 Example 2 - Buckling of a cylindrical shell under axial compression

This example considers the buckling of a simply supported cylindrical shell under axial compression (Nx).
Figure 2a presents the material properties, geometric data, boundary conditions, and loading. Figure 2b presents
the buckling loads computed for different cubic NURBS meshes using the same two integration schemes. The
reference buckling load (N cr) was computed using the classical solution derived using the Donnell theory [9].

The results show that the proposed formulation converges to values considerably lower (7.14%) than the
reference value. This occurs because the classical solution considers a constant pre-buckling distribution of mem-
brane forces, which cannot be obtained using the simply supported boundary conditions. For this reason, Figure
2b also presents the results obtained using FEM and the same boundary conditions. We can see that both IGA
and FEM converged to almost identical results. Finally, the results show that the reduced integration alleviates the
locking problem, leading to a faster convergence.
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Nx

E = 200·109

ν = 0.30

L = 2

R = 0.32

t = 0.01

u = v = 0; w = const.

u = v = w = 0

z

y
x

(a) Problem definition and 16× 16 cubic mesh. (b) Critical load Ncr convergence.

Figure 2. Buckling of a cylindrical shell.

4.3 Example 3 - Cylindrical panel under point load

This example deal with the nonlinear analysis of a hinged cylindrical panel subjected to a point load at the
center, as shown in Figure 3(a). This figure also presents the material properties, geometric data and boundary con-
ditions. Two different thicknesses are considered. Owing to symmetry, only one-quarter of the panel is discretized
using cubic NURBS meshes. Only the reduced integration scheme was used in this example. This shell have been
analyzed by several authors [10], and is particularly popular due to the snapping behavior.

P

z
y
x

L
R θ

L

u = v = w = 0

E = 3102.75

ν = 0.30

L = 254

R = 2540

t = 12.7 ou 6.35

(a) Problem definition and 8× 8 cubic mesh. (b) Load-deflection for t = 12.7. (c) Load-deflection for t = 6.35.

Figure 3. Nonlinear analysis of a hinged semi-cylindrical roof.

Figure 3(b) shows the load-displacement curve of the 12.7 thick shell. Accurate results were obtained using
a 4× 4 cubic NURBS mesh in comparison with the reference results [10]. The curve for the finer mesh (8× 8) is
almost identical. This shell presents a simple nonlinear behavior, characterized by the presence of limit points and
snap-through.

Figure 3(c) shows the results for the 6.35 thick shell. This structure presents a more complex nonlinear
behavior, with snap-through and snap-back. Reasonably accurate predictions were obtained using a 4 × 4 cubic
NURBS mesh. The curve for the finer mesh (8× 8) is almost identical, but closer to the reference results [10] for
larger displacements.

5 Conclusion

This work presented a NURBS-based isogeometric formulation to stability analysis of shells. The formulation
was successfully applied to determination of critical loads and nonlinear equilibrium paths. It was observed that,
using the reduced integration scheme, the locking phenomenon is alleviated, improving the accuracy of the results
and the computational efficiency. However, both integration schemes converged to the same solutions with model
refinement.
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With the first two examples we were able to test the ability of the formulation to obtain excellent results
for buckling loads. Regarding the nonlinear analysis, we saw that the presented formulation was able to trace
the equilibrium paths with great accuracy even with coarser meshes. Despite being based on a formulation for
considering only moderate rotations, the element was able to represent the nonlinear behavior for considerable
displacement values, improving the results with mesh refinement.

Further research will be carried out on the behavior of the proposed formulation on the post-buckling analysis
and imperfection sensitivity of shells.
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