
Model constrained empirical Bayesian neural networks for inverse prob-
lems

Russell S. Philley1, Hai V. Nguyen2, Tan Bui-Thanh1,2

1Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin
201 E. 24th Street, C0200, 78712, Austin, Texas, United States of America
rsphilley@utexas.edu, tanbui@oden.utexas.edu
2Dept. of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin
2617 Wichita Street, C0600, 78712, Austin, Texas, United States of America
hainguyen@utexas.edu, tanbui@oden.utexas.edu

Abstract. Principled Uncertainty quantification (UQ) in deep learning is still an unsolved problem. Numerous
methods have been developed so far, with Bayesian neural networks (BNNs) as the popular approach. BNNs, while
inherently UQ-enabled and resistant to over-fitting, suffer from unnatural and artificial priors over their parameters.
This paper develops a model-constrained framework for quantifying the uncertainty in deep neural network inverse
solutions. At the heart of our approach is an interpretable and physically-meaningful prior over neural network
parameters trained through use of Stein variational gradient descent (SVGD). We provide comprehensive numerical
results for a 2D inverse heat conductivity problem and a 2D inverse initial conditions problems for both the time-
dependent Burgers’ and Navier-Stokes equations.

Keywords: Deep learning, inverse problems, Bayesian methods, uncertainty quantification, variational inference

1 Introduction

Inverse problems play a significant role in various scientific and engineering endeavors, facilitating the fusion
of measurements and data with models and physics, enabling us to uncover cause from effect. Many specific
problems of interest in engineering and science are governed by partial differential equations (PDEs); as such, the
solution of any associated inverse problems are also governed by PDEs (Tarantola [1], Kaipio and Somersalo [2]).
Although the mathematical description of an inverse problem may be simple and elegant, it is important to note
that finding solutions to these problems can be challenging due to their ill-posed nature, with conditions described
by Hadamard [3]. Additionally, the computational methods used present their own set of complications, incurring
significant costs when dealing with high-dimensional PDE parameters. This phenomenon, known as the curse of
dimensionality, calls for careful consideration and resource management. Inverse problems for practical systems
(Alifanov [4], Oliver et al. [5], Komatitsch et al. [6], Bui-Thanh et al. [7], Lefebvre et al. [8]) also display this
same high-dimensional space challenge; this issue is compounded when adding uncertainty estimates to inverse
solutions. Consequently, having solutions to PDE-constrained inverse problems is of great importance.

Deep learning is a subset of machine learning which focuses on deep neural networks (DNNs), these are
neural networks which consist of more than one hidden layer (Goodfellow et al. [9], Nielsen [10]). DNNs have
exploded in popularity for scientific applications in the past decade, seeing usage in numerous fields (Kojima
et al. [11], White et al. [12], Pestourie et al. [13], Tahersima et al. [14], Peurifoy et al. [15], So et al. [16], Jiang
et al. [17], Singh et al. [18], Goh et al. [19]). In addition to the pure data-driven approaches, there have been
efforts to incorporate constraints from physics information into the training process with the aim of avoiding the
overfitting issues associated with pure data-driven approaches, as well as allowing for the use of less data relative
to pure data-driven approaches. Physics-informed neural networks (PINNs) make use of physics information by
constraining the network training with the PDE residual (Raissi et al. [20], Karniadakis et al. [21], Pang et al. [22]).
Other methods ([23, 24]) use networks to learn the unknown parameters via optimization constrained by physics
equations. Pakravan et al. [25] uses autoencoders to learn the inverse map by minimizing the data misfit. Jin et al.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023

Model Constrained Bayesian Neural Networks

[26] account for both data misfit and regularization for seismic inversion. In the work by Nguyen and Bui-Thanh
[27], a fully differentiable forward model is incorporated into the loss to learn the Tikhonov regularized inverse
solver along with theoretical results for the method.

Inverse problems involve a multitude of inputs, including PDE parameters, initial & boundary conditions,
empirical data, and constitutive models, among others. However, it is not always the case that all of these inputs
may be available. There could be instances where boundary conditions are missing, where data is sparse, or even
cases of model inadequacy. When faced with such situations, it is natural to question the reliability of our solution
to the inverse problem. This leads us to uncertainty quantification (UQ), in which we seek to assess and quantify
uncertainty in both the inputs and outputs of our simulations (Sullivan [28]). Through UQ we enable informed
decision-making processes in their respective application domains.

UQ is often broken into Bayesian and non-Bayesian methods; Gaussian process regression (GPR)[29] is one
such example of a Bayesian method, defining Gaussian priors over parameters before pushing the prior uncertainty
measure forward to provide uncertainty for predictions. However, in practice GPR struggles with solving PDEs
due to nonlinearities. Markov chain Monte Carlo (MCMC) methods are used for sampling from an arbitrary distri-
bution and have been applied to UQ for PDE constrained inversion (Steins et al. [30], Bui-Thanh and Nguyen [31]),
although MCMC methods are often intractable in high-dimensional parameter spaces due to a slow convergence
rate. Polynomial chaos expansions described by Xiu and Karniadakis [32] are not inherently Bayesian, but have
been used in Bayesian formulations in the work from Madankan et al. [33] and Shao et al. [34].

Empirical Bayes methods are those in which the prior distribution is influenced in some way by the data,
from a desire to try and combine the strengths of both frequentist and Bayesian methods (Casella [35], Robbins
[36], Wasserman [37]). Although they satisfy the most basic requirements to be called a Bayesian method, they
are subject to great criticism on account of the "double-dipping" of data, as well as the violation of the Likelihood
Principle, which states that all experimental data is incorporated in the likelihood distribution, although there are
efforts to minimize these criticisms described by Darnieder [38]. Despite these critiques, empirical Bayes methods
have found pragmatic use and adoption. Our proposed method, while empirical Bayes in nature, is focused on
deep learning techniques.

Despite the widespread exploration of deep learning in the physical sciences, uncertainty quantification for
deep learning remains an unsolved problem as evidenced by Abdar et al. [39], He and Jiang [40], Gawlikowski
et al. [41], and Kabir et al. [42]. UQ techniques for deep learning can be broken down into multiple categories,
but it is natural to think of methods as being for a single network or for an ensemble, and as being deterministic or
probabilistic. Deep-UQ by Tripathy and Bilionis [43] is a method for a single deterministic network which aims to
parameterize the structure of a DNN to recover a low-dimensional manifold in the input space to create surrogate
models. SDE-Net by Kong et al. [44] is also for a deterministic single network, but it instead aims to combine
the training of a DNN with the integration of an SDE to impose uncertainty on network predictions. Ensemble
methods are numerous, but notable ones include usage of techniques at training-time like bagging and boosting
given by Achrack et al. [45] along with techniques to reduce ensemble size, such as pruning (Cavalcanti et al. [46])
and distillation (Malinin et al. [47], Lindqvist et al. [48]). There are numerous kinds of probabilistic techniques,
but among the most noteworthy are Bayesian neural networks (BNNs) (Neal [49], MacKay [50]). BNNs define a
prior distribution over the network parameters, and are updated with problem data to reach some trained posterior
distribution of network parameters given data, at which point prediction can be made via integration over the
posterior distribution. Depending on the algorithm and integrating procedure, Bayesian neural networks can be
single or ensemble-based. Due to the principled nature of the Bayesian approach, BNNs have been a popular
choice for UQ in scientific deep learning. B-PINNs described by Yang et al. [51] are an extension of PINNs from
deterministic networks to BNNs. Agata et al. [52] use a combination of BNNs and PINNs, but they also combine
it with a velocity-space Stein Variational Gradient Descent (SVGD) for application to seismic tomography. Yang
et al. [53] describes output-constrained BNNs, where the aim is to impose functional constraints about output
feasibility onto the prior.

Variational inference is a technique for approximating the intractable integrals that appear in Bayesian in-
ference (Bishop [54], Blei et al. [55], Bishop [56]). SVGD, described by Liu and Wang [57], is a deterministic,
gradient-based sampling method for variational inference; with SVGD we define a desired target distribution and
transport an ensemble of arbitrarily-sampled particles to approximate the target distribution. D’Angelo et al. [58]
compared SVGD with other ensemble-based methods for neural networks and found that enhanced repulsion be-
tween ensemble members can improve approximation of the Bayesian posterior. In the work by Hu et al. [59],
SVGD was tested with BNNs on prediction of cyclical time-series data. Similar to Agata et al. [52], Sun and Wang
[60] used a combination of BNNs, PINNs, and SVGD to reconstruct fluid flow. In the work by Geneva and Zabaras
[61], UQ for Reynolds-averaged turbulence modeling was performed through a combination of BNNs and SVGD.

Although published works such as (Yang et al. [51, 53], Sun and Wang [60]) have attempted to fuse BNNs
with physics information, and work such as that of Agata et al. [52] has gone further and used SVGD to try and

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023

R. Philley, H. Nguyen, T. Bui-Thanh

define a physically-interpretable Bayesian prior, no work has yet developed an empirical Bayesian UQ-enabled,
interpretable deep-learning based inverse solver with a physically intuitive prior.

In this paper we introduce a novel algorithm that provides UQ capabilities for model-constrained empirical
Bayesian neural networks for inverse problems. Our formulation provides a framework for eliciting an inter-
pretable and physically-meaningful prior over neural network parameters. Furthermore, our variational inference
formulation allows us to train the BNN even if network parameters are not initially sampled from the Bayesian
prior, allowing us to maintain the interpretability of the Bayesian formulation while circumventing the difficulties
involved with initializing parameters from complicated Bayesian priors.

2 Results:

We propose new methods that are analogues of the naive DNN (NDNN), the model-constrained DNN (MCDNN),
and the TNet method described in our previous work from Nguyen and Bui-Thanh [27]. Respectively, we refer
to our UQ extensions as NBNN, MCBNN, and TBNN. Although NBNN is just a naive BNN and thus is not a novel
method, MCBNN and TBNN are our novel extensions of MCDNN and TNet. We provide results for three different
problems of interest: Poisson’s equation, Burgers’ equation, and the Navier-Stokes equations. We test performance
between NBNN, MCBNN, TBNN, and the Tikhonov inverse solution. Shared training parameters for all problems are
listed in Table 1; most values are chosen from our previous work shown in Nguyen and Bui-Thanh [27].

Table 1. Summary of shared training parameters for NBNN, MCBNN and TBNN for nonlinear inverse problems in
section 2.1, 2.2 and 2.3.

Network

Architecture 1 layer with 5000 neurons

Activation function ReLU

Weight initializer N (0, 0.02)

Bias initializer 0

Training
Optimizer ADAM

Learning rate 1e− 3

Test data 500 samples (drawn independently)

Precision Double precision

We do not perform batching and instead train with all samples in one batch as all training set sizes are
relatively small. We provide additive noise to our observations y via samples from N (0, δmaxy), where δ is
a problem-specific relative noise level. Optimal regularization parameters are selected on a problem-dependent
basis for NBNN, MCBNN, TBNN, and the Tikhonov solution from their deterministic analogues per our previous
experiments shown in Nguyen and Bui-Thanh [27].

To measure performance on the test set, we calculate relative error, mean absolute error, and mean standard
deviation. We calculate relative error for the inverse solution on the test set as follows,

RErr =
1

ns

ns∑
i=1

||ûi − utrue||2

||utrue||2
. (1)

We compute mean absolute error on the test set similarly,

MAErr =
1

ns

ns∑
i=1

1

m
||ûi − utrue||2. (2)

And we calculate the mean standard deviation of the inverse solution over all samples in the test set as follows:

σ =
1

ns

ns∑
i=1

√
E
(
(ûi)2

)
−
(
E(ûi)

)2
(3)

When plotting error or standard deviation across the problem domain, we compute the respective metric on a
pointwise basis.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023

Model Constrained Bayesian Neural Networks

2.1 Poisson Equation:

We consider the following equation,

−∇ · (eω∇y) = 20 in Ω = (0, 1)
2
,

y = 0 on Γext,

n · (eω∇y) = 0 on Γroot,

(4)

where ω is the conductivity field, y is the temperature field, and n is the unit outward normal vector on Neu-
mann boundary part Γroot. Figure 1 shows the domain (left subfigure) and a 16×16 mesh (right subfigure) together
with the locations of 10 observational points of the state y. In this problem, we are interested in reconstructing the
conductivity field given a set of 10 pointwise observations; observation locations were chosen at random.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1. 2D heat conductivity inverse problem. Left: the domain and the boundaries; Right: A 16 × 16 finite
element mesh with 10 observational locations.

Construction of training and testing data sets. We start with drawing the parameter conductivity samples
via a truncated Karhunen-Loève expansion

ω(x) =

n∑
i=1

√
λiϕi(x)ui, x ∈ [0, 1]

2
, (5)

where (λi, ϕi) are the eigenpairs of the following two-point correlation function given by Constantine et al. [62]:

C (x1, x2) = exp

(
−
∥x1 − x2∥1

β

)
(6)

where || · ||1 is the 1-norm on R2 and β = 0.02 is the correlation length. Here, u = (ui)
n
i=1 ∼ N (0, I) is a

standard Gaussian random vector. Instead of directly inverting for the physical parameter ω, we reconstruct the
coefficient vector u. Specifically, we select n = 15 eigenvectors corresponding to the first 15 largest eigenvalues.
For each sample, we discretize ω and then solve the heat equation for the temperature y by the finite element
method. Observations of the temperature field are taken at 10 observational points, which are then corrupted with
additive Gaussian noise with a relative noise level δ. We generate test pairs (ω,y) using the same process.

We look at multiple hyperparameters to test performance. First, in case (A), we test performance with varying
training set sizes nt and observational noise magnitudes δ. In case (B), we test performance with varying lengths
of the warm-start to intelligently sample initial network parameters. In case (C), we test performance with varying
ensemble sizes r.

Case (A): We construct the training set to have nt = {50, 100, 200} samples, the magnitude of additive noise
to be δ = {0%, 0.5%, 1%, 2%}, and the SVGD ensemble size to be r = 10. For each training set Tnt with its
size denoted by nt, we select the elements of the training set such that T50 ⊂ T100 ⊂ T200. Each simulation was
executed eight times with different seeds and the results averaged to get a reliable measure of performance.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023

R. Philley, H. Nguyen, T. Bui-Thanh

Table 2. Minimum relative error (%) and corresponding standard deviation of predictions at δ = 0.5% for all
methods. Left column is error, right column is standard deviation

NBNN MCBNN TBNN Tikhonov

nt = 50 61.52 0.0497 56.60 0.0051 46.44 0.0026

45.38 0.0022nt = 100 54.16 0.0519 50.57 0.0046 45.81 0.0030

nt = 200 50.44 0.0438 48.31 0.0041 45.61 0.0028

Table 3. Minimum relative error (%) and corresponding standard deviation for TBNN and the Tikhonov solution.
Left column is error, right column is standard deviation.

δ = 0% δ = 0.5% δ = 1% δ = 2%

TBNN, nt = 50 43.05 0.0025 46.44 0.0026 59.76 0.0244 79.36 0.0038

TBNN, nt = 100 40.82 0.0031 45.81 0.0030 60.16 0.0037 78.50 0.0037

TBNN, nt = 200 39.90 0.0028 45.61 0.0026 59.92 0.0036 77.18 0.0037

Tikhonov, ns = 500 38.71 0.0021 45.38 0.0021 62.52 0.0022 77.00 0.0026

Figure 2. Plots of TBNN on a test set sample, dots are observation locations. Left: true solution, center left:
predicted solution, center right: absolute error, right: standard deviation.

Table 2 shows that TBNN outperforms NBNN and MCBNN in terms of both accuracy and certainty. It is
also noteworthy that TBNN performs well with small nt, in comparison to NBNN and MCBNN which struggle.
Furthermore, observe the values of standard deviation; considering that values for the inverse solution loosely
range from (−1, 1), this means that a standard deviation of 0.003 is roughly within the relative noise level of
δ = 0.5%. Put another way, this means that TBNN and the Tikhonov solution achieved uncertainty measures
roughly comparable to the degree of noise. MCBNN also performs well, but is still outperformed by TBNN. NBNN
performs poorly on the uncertainty measure, with standard deviation values roughly 20 to 30 times those of the
Tikhonov solution.

Table 3 demonstrates TBNN with varying degrees of relative noise; as is expected, relative error and standard
deviation increase with increasing noise. Figure 2 illustrates the predictions made by TBNN.

Case (B): We construct the training set to only have nt = {200} samples, the magnitude of additive noise
to be δ = {0.5%}, and the SVGD ensemble size to be r = 10. To test how the algorithm performs with different
particle initializations, we apply a warm-start of varying lengths before training; namely, we test with warm-
starts of {0, 10000, 20000} epochs. Each simulation was executed four times with different seeds and the results
averaged to get a reliable measure of performance.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023

Model Constrained Bayesian Neural Networks

Figure 3. Relative error during training with a warm-start. Negative epochs indicate ρm(θ) is the target distribution,
positive epochs indicate ρ(θ|T) is the target distribution. Left: NBNN, center: MCBNN, right: TBNN.

Although surprising, Fig. 3 demonstrates that there is no benefit to the use of a warm-start in practice. Nu-
merical values were omitted in the interest of space, but asymptotically TBNN and MCBNN performed the same
regardless of the warm-start duration; NBNN actually sees degraded performance from the warm-start. However,
the warm-start does have interesting behavior. First, it raises the relative error on the test set when trying to sample
particles from ρm(θ). But as soon as the warm-start is finished and the target distribution is set to be ρ(θ|T),
the test error sees a dramatic decrease. More intriguing is the fact that having a warm-start makes the BNN learn
faster than a BNN with particles sampled from a Gaussian. We believe that this provides evidence that the model-
informed prior ρm(θ) is a physically-intuitive choice for the BNN parameter space.

Case (C): We construct the training set to only have nt = {200} samples, and we set the magnitude of
additive noise to be δ = {0.5%}. To investigate how SVGD ensemble size affects algorithm performance, we
tested with ensemble sizes of r = {10, 50, 100}. Each simulation was executed four times with different seeds and
the results averaged to get a reliable measure of performance.

Table 4. Minimum relative error (%) and corresponding standard deviation of predictions for all methods. Left
column is error, right column is standard deviation

NBNN MCBNN TBNN Tikhonov

r = 10 50.23 0.0444 48.17 0.0041 45.48 0.0025 45.25 0.0021

r = 50 49.75 0.0311 48.00 0.0047 45.52 0.0043 45.27 0.017

r = 100 49.43 0.0151 47.98 0.0074 45.51 0.0051 45.30 0.0022

Table 4 demonstrates ensemble size r does not have a particularly strong effect on test error. This is ex-
pected, as SVGD with r = 1 will reduce to simple gradient ascent for maximum a posteriori estimation. We also
observe that uncertainty for TBNN, MCBNN, and the Tikhonov solution are relatively unaffected. NBNN does see
reduced uncertainty with a larger ensemble size r, but this comes at the cost of being an un-interpretable method.
Furthermore, while NBNN reduced uncertainty, we mention that the terminal performance of NBNN degraded with
increasing ensemble size. This may be caused by an inability for a simple L2 regularization to handle a large
parameter space, in comparison to the informative regularization provided by the model-informed prior.

2.2 Burgers’ Equation:

We consider the following viscous 2D Burger’s equations

∂ω

∂t
+ ω

∂ω

∂x
+ v

∂ω

∂y
= ν

(
∂2ω

∂x2
+

∂2ω

∂y2

)
x, y ∈ (0, 1) , t ∈ (0, 0.5],

∂v

∂t
+ ω

∂v

∂x
+ v

∂v

∂y
= ν

(
∂2v

∂x2
+

∂2v

∂y2

)
x, y ∈ (0, 1) , t ∈ (0, 0.5],

(7)

subject to periodic boundary conditions, initial velocity components v(x, y, 0) = v0(x, y) = 1, ω(x, y, 0) =
ω0(x, y), and viscosity coefficient ν = 10−2. The spatial domain (0, 1) × (0, 1) is discretized with nx = 32 and
ny = 32 mesh points in x and y directions, respectively, while the temporal domain (0, 0.5) is subdivided into 201
time steps (including the initial time step t = 0). In this problem, the goal is to invert for the initial x-velocity ω0

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023

R. Philley, H. Nguyen, T. Bui-Thanh

from 20 pointwise values of the vorticity ω0.5 (see the definition below) at the final time T = 0.5. Observation
locations were chosen such that they cross the domain.

Construction of train and test data sets. To generate training data for learning the inverse map, we draw
periodic samples of ω(x, y, 0) using a truncated Karhunen-Loève expansion

ω(x, y, 0) = exp

 24∑
i=1

√
λi ϕi(x, y)ui

 , (8)

where u = {ui}24i=1 ∼ N (0, I), and (λi, ϕi) are eigenpairs of the covariance 7
3
2 (−∆+ 49I)−2.5 with

periodic boundary conditions.
Next, we discretize an initial vorticity ω(x, y, 0), denoted as ω0, and we solve the Burgers’ equations via a

finite difference method to compute the discrete x-velocity component at the final time: ω0.5. Finally, the values of
ω0.5 at 20 locations are extracted and corrupted with an additive white noise (δ = 2%) to form yobs. We construct
the training set to have nt = {50, 500} samples, and we select the elements of the training set such that T50 ⊂ T500.
We use r = 50 particles in our SVGD ensemble. Each simulation was executed three times with different seeds
and the results averaged to get a reliable measure of performance.

Table 5. Minimum relative error (%) and standard deviation of predictions for all methods. Left column is error,
right column is standard deviation

NBNN MCBNN TBNN Tikhonov

nt = 50 2.24 0.0110 2.07 0.0102 1.86 0.0064
0.79 0.0014

nt = 500 1.31 0.0197 1.24 0.0312 1.13 0.0127

Figure 4. Plots of TBNN on a test set sample, dots are observation locations. Left: true initial condition, center left:
predicted initial condition, center right: absolute error, right: standard deviation.

Table 5 provides performance metrics for the methods on Burgers’ equation. We see that TBNN outperforms
MCBNN and NBNN in both test error and standard deviation, Tikhonov outperforms all 3 methods together. We also
observe an increase in standard deviation with increasing training set size nt; we posit that it is because the larger
amount of data allows the BNN to better approximate the posterior ρ(θ|T).

2.3 Navier-Stokes Equations:

The vorticity form of 2D Navier-Stokes equation for a viscous and incompressible fluid given by Li et al. [63]
is written as

∂tω(x, t) + v(x, t) · ∇ω(x, t) = ν∆ω(x, t) + f(x), x ∈ (0, 1)
2
, t ∈ (0, T]

∇ · v(x, t) = 0, x ∈ (0, 1)
2
, t ∈ (0, T]

ω(x, 0) = ω0(x), x ∈ (0, 1)
2

(9)

where v ∈ (0, 1)
2 × (0, T] is the velocity field, ω = ∇ × v is the vorticity, ω0 is the initial vorticity,

f(x) = 0.1
(
sin
(
2π (x1 + x2)

)
+ cos

(
2π (x1 + x2)

))
is the forcing function, and ν = 10−3 is the viscosity

coefficient. The spatial domain is discretized with a 32 × 32 uniform mesh, while the time horizon t ∈ (0, 10)
is subdivided into 1000 time steps with ∆t = 10−2. We target to reconstruct the initial vorticity ω0 from the
measurements of vorticity at 20 observed points at the final time T = 10. Observation locations were chosen such
that they cross the domain.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023

Model Constrained Bayesian Neural Networks

Construction of training and testing data sets. To generate data pairs of (ω,y), we draw samples of ω(x, 0)
using the truncated Karhunen-Loève expansion

ω(x, 0) =

24∑
i=1

√
λi ϕi(x)ui, (10)

where ui ∼ N (0, 1) , i = 1, . . . , 24, thus u0 = 0,Γ = I, and (λi, ϕi) are eigenpairs obtained by the eigendecom-
position of the covariance operator 7

3
2 (−∆+ 49I)−2.5 with periodic boundary conditions. Next, we discretize an

initial vorticity ω(x, 0), denoted as ω0, and we solve the Navier-Stokes equation by the stream-function formula-
tion with a pseudospectral method shown in Li et al. [63] to obtain a discrete representation ωt of ω (x, t) at any
time t.

The observation operator is imposed on solution ω10 to form the synthetic observables y, then a realization
of additive white noise with δ = 2% is added to generate a noise-corrupted y sample. We construct the training
set to have nt = {50, 500} samples, and we select the elements of the training set such that T50 ⊂ T500. We use
r = 50 particles in our SVGD ensemble. Each simulation was executed three times with different seeds and the
results averaged to get a reliable measure of performance. We document results for all algorithms in Fig. 5, and
we provide tabulated results in Table 6

Table 6. Minimum relative error (%) and corresponding standard deviation of predictions for all methods. Left
column is error, right column is standard deviation

NBNN MCBNN TBNN Tikhonov

nt = 50 61.78 0.0184 54.12 0.0193 32.54 0.0078
21.89 0.0067

nt = 500 36.34 0.0231 27.00 0.0133 24.83 0.0058

Figure 5. Plots of TBNN on a test set sample, dots are observation locations. Left: true initial condition, center left:
predicted initial condition, center right: absolute error, right: standard deviation.

Table 6 illustrates that TBNN outperforms MCBNN and NBNN in both test error and standard deviation yet
again. We see that TBNN comes the closest to achieving a test error that is comparable with the Tikhonov solution,
and it also achieves a standard deviation comparable with the Tikhonov solution.

3 Conclusions

We argue that TBNN and MCBNN are an effective technique for enabling uncertainty quantification in deep
learning for inverse problems. Despite the fact that we use empirical Bayes, we believe that our formulation allows
us to elicit a physically interpretable prior on the BNN parameter space. Furthermore, we believe that the increased
rate of learning with particles sampled from the model-informed prior ρm(θ) is evidence that the framework is
interpretable. We have provided numerous numerical experiments demonstrating that TBNN can achieve test error
and standard deviations mimicking that of a Tikhonov solver.

Acknowledgements. This research is partially funded by the National Science Foundation awards NSF-OAC-
2212442, NSF-2108320, NSF-1808576 and NSF-CAREER-1845799; by the Department of Energy award DE-
SC0018147, DE-SC0022211, and DE-SC00275836; and by an UT-Portugal award. The authors also acknowledge
the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC, visual-
ization, database, or grid resources that have contributed to the research results reported within this paper. URL:
http://www.tacc.utexas.edu

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023

R. Philley, H. Nguyen, T. Bui-Thanh

3.1 Permission

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. Other Titles in Applied
Mathematics. Society for Industrial and Applied Mathematics, 2005.
[2] J. P. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems, volume 160 of Applied Math-
ematical Sciences. Springer, New York, NY, 2005.
[3] J. Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton university
bulletin, pp. 49–52. Publisher: Princeton University, 1902.
[4] O. M. Alifanov. Inverse Heat Transfer Problems. International Series in Heat and Mass Transfer. Springer,
Berlin, Heidelberg, 1994.
[5] D. S. Oliver, A. C. Reynolds, and N. Liu. Inverse theory for petroleum reservoir characterization and history
matching. Cambidge University Press, 2008.
[6] D. Komatitsch, J. Ritsema, and J. Tromp. The spectral-element method, Beowulf computing, and global
seismology. Science (New York, N.Y.), vol. 298, pp. 1737–1742, 2002.
[7] T. Bui-Thanh, C. Burstedde, O. Ghattas, J. Martin, G. Stadler, and L. C. Wilcox. Extreme-scale UQ for
Bayesian inverse problems governed by PDEs. In SC ’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pp. 1–11. ISSN: 2167-4337, 2012.
[8] M. Lefebvre, E. Bozda, H. Calandra, J. Hill, W. Lei, D. Peter, N. Podhorszki, D. Pugmire, H. Rusmanugroho,
J. Smith, and J. Tromp. A data centric view of large-scale seismic imaging workflows. Supercomputing (SC) 13,
2013.
[9] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
[10] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.
[11] K. Kojima, B. Wang, U. Kamilov, T. Koike-Akino, and K. Parsons. Acceleration of fdtd-based inverse design
using a neural network approach. In Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS),
pp. ITu1A.4. Optica Publishing Group, 2017.
[12] D. A. White, W. J. Arrighi, J. Kudo, and S. E. Watts. Multiscale topology optimization using neural network
surrogate models. Computer Methods in Applied Mechanics and Engineering, vol. 346, pp. 1118–1135, 2019.
[13] R. Pestourie, Y. Mroueh, T. V. Nguyen, P. Das, and S. G. Johnson. Active learning of deep surrogates for
PDEs: application to metasurface design. npj Computational Materials, vol. 6, n. 1, pp. 1–7. Number: 1 Publisher:
Nature Publishing Group, 2020.
[14] M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons. Deep Neural
Network Inverse Design of Integrated Photonic Power Splitters. Scientific Reports, vol. 9, n. 1, pp. 1368. Number:
1 Publisher: Nature Publishing Group, 2019.
[15] J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark,
and M. Soljačić. Nanophotonic particle simulation and inverse design using artificial neural networks. Science
Advances, vol. 4, n. 6, pp. eaar4206. Publisher: American Association for the Advancement of Science, 2018.
[16] S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho. Deep learning enabled inverse design in nanophotonics.
Nanophotonics, vol. 9, n. 5, pp. 1041–1057. Publisher: De Gruyter, 2020.
[17] J. Jiang, M. Chen, and J. A. Fan. Deep neural networks for the evaluation and design of photonic devices.
Nature Reviews Materials, vol. 6, n. 8, pp. 679–700. Number: 8 Publisher: Nature Publishing Group, 2021.
[18] A. P. Singh, S. Medida, and K. Duraisamy. Machine-Learning-Augmented Predictive Modeling of Turbulent
Separated Flows over Airfoils. AIAA Journal, vol. 55, n. 7, pp. 2215–2227. Publisher: American Institute of
Aeronautics and Astronautics, 2017.
[19] H. Goh, S. Sheriffdeen, J. Wittmer, and T. Bui-Thanh. Solving Bayesian Inverse Problems via Variational
Autoencoders. arXiv:1912.04212 [cs, eess, stat] version: 9, 2021.
[20] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics Informed Deep Learning (Part II): Data-driven
Discovery of Nonlinear Partial Differential Equations. arXiv:1711.10566 [cs, math, stat], 2017.
[21] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-informed machine
learning. Nature Reviews Physics, vol. 3, n. 6, pp. 422–440. Number: 6 Publisher: Nature Publishing Group,
2021.
[22] G. Pang, L. Lu, and G. E. Karniadakis. fPINNs: Fractional Physics-Informed Neural Networks.
arXiv:1811.08967 [physics]. arXiv: 1811.08967, 2018.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023

Model Constrained Bayesian Neural Networks

[23] T. Fan, K. Xu, J. Pathak, and E. Darve. Solving Inverse Problems in Steady-State Navier-Stokes Equations
using Deep Neural Networks. arXiv:2008.13074 [cs, math], 2020.
[24] J. Berg and K. Nyström. Neural network augmented inverse problems for PDEs. arXiv:1712.09685 [math,
stat], 2018.
[25] S. Pakravan, P. A. Mistani, M. A. Aragon-Calvo, and F. Gibou. Solving inverse-PDE problems with physics-
aware neural networks. Journal of Computational Physics, vol. 440, pp. 110414. arXiv:2001.03608 [physics],
2021.
[26] Y. Jin, Q. Shen, X. Wu, J. Chen, and Y. Huang. A Physics-Driven Deep-Learning Network for Solving Non-
linear Inverse Problems. Petrophysics - The SPWLA Journal of Formation Evaluation and Reservoir Description,
vol. 61, n. 01, pp. 86–98, 2020.
[27] H. V. Nguyen and T. Bui-Thanh. TNet: A Model-Constrained Tikhonov Network Approach for Inverse
Problems. arXiv:2105.12033 [cs, math, stat], 2022.
[28] T. Sullivan. Introduction to Uncertainty Quantification, volume 63 of Texts in Applied Mathematics. Springer
International Publishing, Cham, 2015.
[29] J. Wang. An Intuitive Tutorial to Gaussian Processes Regression. arXiv:2009.10862 [cs, stat], 2022.
[30] E. Steins, T. Bui-Thanh, M. Herty, and S. Müller. Probabilistic constrained Bayesian inversion for transpira-
tion cooling. International Journal for Numerical Methods in Fluids, vol. 94, n. 12, pp. 2020–2039, 2022.
[31] T. Bui-Thanh and Q. P. Nguyen. FEM-based discretization-invariant MCMC methods for PDE-constrained
Bayesian inverse problems. Inverse Problems and Imaging, vol. 10, n. 4, pp. 943–975. Publisher: Inverse Problems
and Imaging, 2016.
[32] D. Xiu and G. E. Karniadakis. The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations.
SIAM Journal on Scientific Computing, vol. 24, n. 2, pp. 619–644. Publisher: Society for Industrial and Applied
Mathematics, 2002.
[33] R. Madankan, P. Singla, T. Singh, and P. D. Scott. Polynomial-Chaos-Based Bayesian Approach for State
and Parameter Estimations. Journal of Guidance, Control, and Dynamics, vol. 36, n. 4, pp. 1058–1074, 2013.
[34] Q. Shao, A. Younes, M. Fahs, and T. A. Mara. Bayesian sparse polynomial chaos expansion for global
sensitivity analysis. Computer Methods in Applied Mechanics and Engineering, vol. 318, pp. 474–496, 2017.
[35] G. Casella. Illustrating empirical Bayes methods. Chemometrics and Intelligent Laboratory Systems, vol. 16,
n. 2, pp. 107–125, 1992.
[36] H. E. Robbins. An Empirical Bayes Approach to Statistics. In S. Kotz and N. L. Johnson, eds, Breakthroughs
in Statistics: Foundations and Basic Theory, Springer Series in Statistics, pp. 388–394. Springer, New York, NY,
1992.
[37] L. Wasserman. Asymptotic inference for mixture models by using data-dependent priors. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), vol. 62, n. 1, pp. 159–180, 2000.
[38] W. F. Darnieder. Bayesian Methods for Data-Dependent Priors. PhD thesis, The Ohio State University, 2011.
[39] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao, A.
Khosravi, U. R. Acharya, V. Makarenkov, and S. Nahavandi. A review of uncertainty quantification in deep
learning: Techniques, applications and challenges. Information Fusion, vol. 76, pp. 243–297, 2021.
[40] W. He and Z. Jiang. A Survey on Uncertainty Quantification Methods for Deep Neural Networks: An
Uncertainty Source Perspective. arXiv:2302.13425 [cs, stat], 2023.
[41] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel, P. Jung, R.
Roscher, M. Shahzad, W. Yang, R. Bamler, and X. X. Zhu. A Survey of Uncertainty in Deep Neural Networks.
arXiv:2107.03342 [cs, stat], 2022.
[42] H. M. D. Kabir, A. Khosravi, M. A. Hosen, and S. Nahavandi. Neural Network-Based Uncertainty Quantifi-
cation: A Survey of Methodologies and Applications. IEEE Access, vol. 6, pp. 36218–36234. Conference Name:
IEEE Access, 2018.
[43] R. K. Tripathy and I. Bilionis. Deep UQ: Learning deep neural network surrogate models for high dimensional
uncertainty quantification. Journal of Computational Physics, vol. 375, pp. 565–588, 2018.
[44] L. Kong, J. Sun, and C. Zhang. SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates.
arXiv:2008.10546 [cs, stat], 2020.
[45] O. Achrack, R. Kellerman, and O. Barzilay. Multi-Loss Sub-Ensembles for Accurate Classification with
Uncertainty Estimation. arXiv:2010.01917 [cs, stat], 2020.
[46] G. D. C. Cavalcanti, L. S. Oliveira, T. J. M. Moura, and G. V. Carvalho. Combining diversity measures for
ensemble pruning. Pattern Recognition Letters, vol. 74, pp. 38–45, 2016.
[47] A. Malinin, B. Mlodozeniec, and M. Gales. Ensemble Distribution Distillation, 2019.
[48] J. Lindqvist, A. Olmin, F. Lindsten, and L. Svensson. A General Framework for Ensemble Distribution
Distillation. In 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), pp.
1–6. ISSN: 1551-2541, 2020.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023

R. Philley, H. Nguyen, T. Bui-Thanh

[49] R. M. Neal. Bayesian Learning for Neural Networks, volume 118 of Lecture Notes in Statistics. Springer,
New York, NY, 1996.
[50] D. J. MacKay. A practical Bayesian framework for backpropagation networks. Neural computation, vol. 4,
n. 3, pp. 448–472. Publisher: MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . ,
1992.
[51] L. Yang, X. Meng, and G. E. Karniadakis. B-PINNs: Bayesian physics-informed neural networks for forward
and inverse PDE problems with noisy data. Journal of Computational Physics, vol. 425, pp. 109913, 2021.
[52] R. Agata, K. Shiraishi, and G. Fujie. Bayesian seismic tomography based on velocity-space Stein variation
gradient descent for physics-informed neural network. arXiv:2301.07901 [physics], 2023.
[53] W. Yang, L. Lorch, M. A. Graule, S. Srinivasan, A. Suresh, J. Yao, M. F. Pradier, and F. Doshi-Velez. Output-
Constrained Bayesian Neural Networks. arXiv:1905.06287 [cs, stat], 2019.
[54] C. Bishop. Pattern Recognition and Machine Learning. Springer New York, 1 edition, 2006.
[55] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational Inference: A Review for Statisticians. Journal
of the American Statistical Association, vol. 112, n. 518, pp. 859–877. arXiv:1601.00670 [cs, stat], 2017.
[56] C. M. Bishop. Variational learning in graphical models and neural networks. In L. Niklasson, M. Bodén, and
T. Ziemke, eds, ICANN 98, pp. 13–22, London. Springer London, 1998.
[57] Q. Liu and D. Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm.
In Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.
[58] F. D’Angelo, V. Fortuin, and F. Wenzel. On Stein Variational Neural Network Ensembles. arXiv:2106.10760
[cs, stat], 2021.
[59] X. Hu, P. Szerlip, T. Karaletsos, and R. Singh. Applying SVGD to Bayesian Neural Networks for Cyclical
Time-Series Prediction and Inference. arXiv:1901.05906 [cs, stat], 2019.
[60] L. Sun and J.-X. Wang. Physics-constrained bayesian neural network for fluid flow reconstruction with sparse
and noisy data. Theoretical and Applied Mechanics Letters, vol. 10, n. 3, pp. 161–169, 2020.
[61] N. Geneva and N. Zabaras. Quantifying model form uncertainty in Reynolds-averaged turbulence models
with Bayesian deep neural networks. Journal of Computational Physics, vol. 383, pp. 125–147, 2019.
[62] P. G. Constantine, C. Kent, and T. Bui-Thanh. Accelerating Markov Chain Monte Carlo with Active Sub-
spaces. SIAM Journal on Scientific Computing, vol. 38, n. 5, pp. A2779–A2805. Number: 5 Publisher: Society
for Industrial and Applied Mathematics, 2016.
[63] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Fourier
Neural Operator for Parametric Partial Differential Equations. arXiv:2010.08895 [cs, math], 2021.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023

	Introduction
	Results:
	Poisson Equation:
	Burgers' Equation:
	Navier-Stokes Equations:

	Conclusions
	Permission

