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Abstract. The Generalized/eXtended Finite Element Method (G/XFEM) has been recognized as a method able
to accurately and efficiently solve problems that face difficulties when treated by standard methodologies, such as
those from three-dimensional (3-D) Linear Elastic Fracture Mechanics (LEFM). The main advantages of G/XFEM
for this class of problems are the fact that the finite element mesh does not need to fit the crack surface and
that optimal convergence rates in the energy norm are attained. This last advantage has been demonstrated for
two-dimensional (2-D) problems even when uniform meshes are adopted. For 3-D, however, in addition to using
enrichment functions, it has been shown that mesh refinement must be performed to obtain optimal convergence
rates. In this case, since the level of refinement to be adopted is problem-dependent and difficult to be defined
a priori, this work proposes an h-adaptive strategy, based on a posteriori error estimation, able to find optimal
non-uniform meshes that recover optimal convergence rates for 3-D LEFM problems. This is shown herein for a
LEFM problem that exhibits 3-D effects.
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1 Introduction

The Generalized/eXtended Finite Element Method (G/XFEM), see Duarte et al. [1], Strouboulis et al. [2],
and Belytschko and Black [3], has been recognized as a method able to accurately and efficiently solve problems
that face difficulties when treated by standard methodologies. Three-dimensional (3-D) problems of Linear Elastic
Fracture Mechanics (LEFM) are known to be challenging to the Finite Element Method (FEM) since (i) the mesh
needs to fit the crack surface and (ii) special treatments, such as mesh refinement or special finite elements, need
to be adopted close to the crack front in order to capture well the crack singularity. For this class of problems, the
G/XFEM overcomes both these issues by inserting into the problem numerical approximation enrichment functions
that accurately represent their discontinuous and singular behaviors.

For 3-D problems, however, Sanchez-Rivadeneira et al. [6] showed that in addition to using enrichment
functions, mesh refinement is still needed close to crack fronts, especially when second- or higher-order G/XFEM
formulations are adopted. This happens since the enrichment functions usually adopted within the G/XFEM are
able to accurately represent the

√
r singularity, but no higher-order singularities. While mesh refinement is much

easier to be performed in G/XFEM than in FEM, the level of refinement for complex fracture problems is difficult to
be set a priori. In this work, an a posteriori error estimator proposed in Bento et al. [11, 12] for 3-D LEFM problems
is adopted and an h-adaptive algorithm able to recover optimal convergence rates through mesh refinement for these
problems is initially proposed.

In what follows, Sections 2 and 3 briefly summarize the second-order pFEM-GFEM and the a posteriori ZZ-
BD error estimator used in this work. Next, Section 4 presents the h-adaptive algorithm proposed in this work,
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which is essentially a specialization to LEFM problems of what is presented in Zienkiewicz and Zhu [8]. Then,
Section 5 illustrates the use of this h-adaptive technique for a LEFM problem that exhibits 3-D effects, and, finally,
Section 6 gives the main conclusions.

2 G/XFEM for 3-D Linear Elastic Fracture Mechanics

In this work, the h-adaptive algorithm is proposed to be used along with second-order G/XFEM formula-
tions. It is noted that Sanchez-Rivadeneira and Duarte [4] showed that first-order G/XFEM is not competitive with
second-order FEM that uses quarter-point elements. Due to this conclusion, recent works, such as the ones in
Sanchez-Rivadeneira and Duarte [4] and Bento et al. [5], developed second-order G/XFEM formulations in which
the convergence rate is optimal, i.e., O(h2), with h a refinement parameter. In the present work, the formulation
proposed in Sanchez-Rivadeneira and Duarte [4], referred to as pFEM-GFEM, is adopted, but other second- or
higher-order formulations can be used as well.

This formulation [4] expands p-hierarchical FEM such that the pFEM-GFEM approximation space is given
by

SpFEM-GFEM = SpFEM + SENR = SpFEM +
(
SD

ENR + SS
ENR

)
, (1)

with SpFEM a p-hierarchical space that approximates the polynomial part of the problem solution and SENR an
enriched space, which can be decomposed as SENR = SD

ENR + SS
ENR, for LEFM problems. In Eq. (1), SD

ENR
represents the discontinuous part of the displacement solution and SS

ENR the singular and discontinuous part of the
displacement solution of LEFM problems.

Since second-order discontinuous and singular basis functions are inserted into the numerical approximation,
the pFEM-GFEM allows (i) the mesh to be generated independently of the crack surface and (ii) optimal conver-
gence rates to be attained. Yet, well-conditioned stiffness matrices are obtained, as shown in Sanchez-Rivadeneira
and Duarte [4]. For more details about pFEM-GFEM, the reader is reffered to Sanchez-Rivadeneira and Duarte
[4], Sanchez-Rivadeneira et al. [6], and Mazurowski et al. [7].

3 A ZZ-BD Error Estimator for 3-D LEFM

Zienkiewicz and Zhu (ZZ) error estimators are recovery-based error estimators that compute approximations
to the energy norm of the discretization error ϵ∗ by substituting exact gradient fields by a recovered or improved
gradient field. In the case of elasticity problems, this gradient field is usually taken as the stresses, and, once the
recovered stresses are computed, the estimated error ϵ∗ is given by

ϵ∗ =

√∫
Ω

(
D
(
σ∗ − σ̂

))
·
(
σ∗ − σ̂

)
dV , (2)

with σ∗ the recovered stress field and σ̂ the approximated stress field.
Recently, based on the seminal work of Zienkiewicz and Zhu [8], Lins et al. [9] adapted this well-known

ZZ estimator using a block-diagonal L2 projection, proposed by Schweitzer [10], to compute the recovered stress
field. The new error estimator proposed by Lins et al. [9], referred to as ZZ-BD (BD: block-diagonal), improves
the error estimator computational performance, since the main matrix to be factorized is block-diagonal, while
still returning good effectivity indexes. As follow-up works, Bento et al. [11] expanded the ideas to second-order
FEM and G/XFEM and Bento et al. [12] developed error estimators for 3-D LEFM problems solved by the same
second-order pFEM-GFEM as presented in Section 2.

In the present work, the ZZ-BD error estimator proposed in Bento et al. [12] to solve 3-D LEFM problems is
used to guide h-adaptive simulations. In summary, as presented in Bento et al. [12], the recovered stress field for
3-D LEFM problems is given by

σ∗(x) = σ∗
P (x) + σ∗

D(x) + σ∗
S(x), (3)

in which σ∗
P (x) represents the polynomial part of the recovered stress field, generated by polynomial recovery

enrichment functions, σ∗
D(x) represents the discontinuous part of the recovered stress field, generated by high-

order Heaviside recovery enrichment functions, and σ∗
S(x) represents the singular part of the recovered stress

field, generated by some terms of the gradients of Oden-Duarte (OD) enrichment functions, as proposed in Bento
et al. [11].

For details, the reader is referred to Bento et al. [11, 12] to have a comprehensive explanation of the error
estimator that is used next.
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4 h-Adaptive Algorithm

The adaptive mesh refinement (AMR) framework proposed in Zienkiewicz and Zhu [8] and also presented in
Oñate and Bugeda [13] is adopted in this work. This procedure consists of finding optimal finite element meshes
in the sense that the discretization error becomes equally distributed over the finite elements. In summary, global
and local adaptive criteria are defined and the associated global and local refinement parameters are computed, as
presented in the following.

For the h-adaptive simulations performed in this work,

a) It is required the global discretization error ϵ to be smaller than or equal to a tolerance ϵ̄, i.e., ϵ ≤ ϵ̄. Based
on this, a global discretization parameter ζG is defined as

ζG =
ϵ

ϵ̄
. (4)

If ζG > 1, all finite elements are uniformly refined.

b) It is also required the local discretization error ϵj , i.e., the discretization error in element j, with j =
1, . . . , Nel, to be smaller than a required error ϵrj . Since in this work, the h-adaptive algorithm seeks to
equally distribute the discretization error over all finite elements, this required error is given by ϵrj = ϵ/√
Nel. Therefore, a local refinement parameter ζLj

is defined as

ζLj =
ϵj
ϵ

√
Nel, (5)

with Nel the number of elements.
For the definition of other local discretization parameters, the reader is referred to Oñate and Bugeda [13],
for instance.

Based on these global and local refinement parameters, an element refinement parameter ζj can be computed
as

ζj = ζG ζLj =
ϵj
ϵ̄

√
Nel. (6)

Finally, for standard adaptive algorithms, the new finite element size hnew
j is obtained based on hold

j as

hnew
j =

hold
j

βj
, βj =

(
ζj

)1/m

, (7)

with m = p, and p the approximation polynomial order, except for finite elements that intersect singularities, in
which m = λ, with λ the singularity strength.

4.1 h-Adaptivity for LEFM problems

In this work, an h-adaptive algorithm for LEFM problems is proposed based on what is presented in Section
4. One of the main assumptions is that the local refinement must be performed only close to the crack front, where
the problem singularity lies. It is important to note that for 3-D LEFM problems, even when using enrichment
functions as presented in Section 2, the singularity of order O(r3/2) still bounds the approximated second-order
solutions. The h-adaptive procedure proposed herein is performed in two steps as summarized next:

1. The global refinement parameter ζG is computed using Eq. (4) and applied to refine all elements in the
mesh; and, after that,

2. Local refinement parameters ζLj
are computed for the elements that touch or are intersected by the crack

front and then an unique parameter βΓC
is obtained by

βΓC
= max j∈S

(
βj

)
, (8)

with S a set containing all finite elements that touch or are intersected by the crack front and βj =(
ζG ζLj

)1
/
m

, computed as shown in Eqs. (6) and (5).

In Step 2, the parameter m is taken as m = 3/2 and βΓC
is the parameter used to compute hnew

j (cf. Eq. (7))
of all elements that touch or are intersected by the crack front.
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5 Numerical Experiments

5.1 3-D Edge Crack Problem

The numerical example explored in this section consists of the following rectangular prism Ω̄ = [−0.5, 0.5]×
[−0.875, 0.875]× [−0.75, 0.75] ⊂ R3 containing a through-the-thickness edge crack

Γ̄C =
{
(x1, x2, x3) ∈ R3

∣∣− 0.5 ≤ x1 ≤ 0, x2 = 0,−0.75 ≤ x3 ≤ 0.75
}
,

as shown in Fig. 1. This is the same problem as the one analyzed in Sanchez-Rivadeneira et al. [6] and Bento et al.
[12]. A linear elastic material, with Young’s modulus E = 1 and Poisson’s ratio ν = 0.3, is adopted and uniform
traction, with magnitude σ0 = 0.0025, is applied normal to the boundaries in which x2 = −0.875 and x2 = 0.875.
These boundary conditions are also depicted in Fig. 1. Dirichlet boundary conditions are applied to restrict rigid
body motion only. It is noted that this is a pure Mode I problem.

x1

x2

x3

1.5

0.5

(0, 0, 0)

σ0 = 0.0025

σ0

Explicit representation of

Crack front

crack surface

Figure 1. (a) Geometry and Neumann boundary conditions of the 3-D edge crack problem explored in this work,
and (b) explicit representation of the crack surface. Figure extracted from Bento et al. [12]

In Bento et al. [12], the ZZ-BD error estimator presented in Section 3 is first presented for 3-D LEFM
problems. As presented in Section 4, this error estimator is adopted in this work to guide h-adaptive simulations
that seek to generate optimal meshes in the sense that optimal convergence rates of O(NDoF

2/3) is obtained for
3-D LEFM problems too. As shown in Sanchez-Rivadeneira et al. [6], among others, in addition to adopting
enrichment functions, mesh refinement around crack fronts is still required to attain optimal convergence rates for
second- or higher-order G/XFEM formulations.

The numerical experiments shown in this section adopt M (k), with k = 1, 2, 3, as initial meshes to perform
h-adaptive simulations and explore the procedure proposed in Section 4. Mesh M (k) is obtained by subdividing
the edges parallel to x1 by 8 × k, the edges parallel to x2 by 14 × k, and the edges parallel to x3 by 12 × k,
and generating then uniform tetrahedral finite element meshes over the domain Ω̄. For all the meshes M (k), the
corresponding finite element size is given by hk ≡ 1/(8k). The tetrahedral meshes M (1) and M (2) are depicted
in Fig. 2.

The results presented in this section aim to initially test the h-adaptive algorithm proposed in Section 4 and
check if it is able to recover optimal convergence rates for 3-D LEFM problems. Three h-adaptive simulations are
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x1

(a)

x2

x3

(b)

Figure 2. Uniform meshes (a) M (1) and (b) M (2) used as initial meshes for h-adaptive simulations. Mesh M (3),
in which the edges parallel to x1, x2, and x3 are divided by 24, 42, and 36, respectively, is also used as an initial
mesh for h-adaptive simulation.

performed, each one starting with the uniform meshes M (1), M (2), and M (3). The tolerances ϵ̄(k) (see Section
4) are set so the h-adapted meshes are, after only global refinement, M (2), M (3), and M (4), respectively. These
tolerances are computed, therefore, as

ϵ̄(k) =

(
h(k+1)

h(k)

)2

ϵ(k).

The values of ϵ̄(k) and the associated global refinement parameter ζ(k)G =

(
h(k+1)

h(k)

)−2

(cf. Eq. (4)) are presented

in Table 1.
It is importante to note here that usually ϵ̄ is an user pre-specified tolerance value. However, since the

numerical experiments presented in this section aim to initially test the h-adaptive procedure proposed herein, the
value ϵ̄ is computed so the h-adapted mesh related to M (k) is given by M (k+1).

Table 1. Summary of h-adaptive simulations performed in this work. Initial mesh and finite element size, and
tolerances ϵ̄(k) are presented, as well as the global refinement parameter ζ(k)G = ϵ(k)/ϵ̄(k).

Simulation
(k)

Initial Mesh h(k) Tolerance
ϵ̄(k)

ζ
(k)
G

1 M (1) 0.12500 8.10× 10−5 4.000

2 M (2) 0.06250 6.97× 10−5 2.250

3 M (3) 0.04167 4.81× 10−5 1.778

In summary, following what is presented in Section 4.1, the h-adaptive analysis (k) starts with uniform mesh
M (k) and, after global refinement based on the global refinement parameter ζ(k)G , the uniform mesh M (k+1) is
obtained. After that, as presented in Section 4.1, local refinement is performed close to the crack front based on
β
(k)
ΓC

. The values of β(k)
ΓC

is presented in Table 2.
Finally, Fig. 3 illustrates plots of ϵ × NDoF related to the performed h-adaptive simulations. The blue curve

shows the convergence curve when only uniform meshes are adopted. It is observed that the h-adaptive simu-
lations are able to recover optimal convergence rates, which is O(NDoF

2/3). All simulations performed herein
use estimated errors, but the dashed curves in Fig. 3 show also the associated reference errors. These reference
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Table 2. Parameters adopted to refine the mesh close to the crack front.

Simulation
(k)

Initial Mesh β
(k)
ΓC

New mesh size close to the
crack front

hnew,(k) = hold,(k)/β
(k)
ΓC

1 M (1) 1.241× 101 1.01× 10−2

2 M (2) 1.690× 101 3.70× 10−3

3 M (3) 2.389× 101 1.74× 10−3

errors are obtained by Eq. (2), substituting the recovered field σ∗ by the exact one σ. The closeness between the
corresponding curves shows the good effectivity of the ZZ-BD error estimator to estimate discretization errors, as
shown in Bento et al. [12].

104 105 106

10−4

1

0.5
10.47

1
0.67

Number of DoFs
(NDoF)

D
is
cr
et
iz
at
io
n
E
rr
or

Uniform

h-Adaptive Simulation 1

h-Adaptive Simulation 2

h-Adaptive Simulation 3

Figure 3. h-Adaptive simulations (red, green, and purple curves) performed aiming to recover optimal convergence
rates for the 3-D edge crack problem, which is O(NDoF

2/3). The results shown as a blue curve use only uniform
meshes and sub-optimal convergence rates are obtained in this case.

6 Conclusions

In this work, an h-adaptive procedure that explores the ZZ-BD error estimator is presented. The procedure es-
sentially uses estimated discretization errors and an adaptive mesh refinement criteria to find optimal non-uniform
meshes that recover optimal convergence for 3-D LEFM problems. The results shown herein are a first indica-
tion that optimal convergence of second-order G/XFEM approximations can be achieved for LEFM problems that
exhibits 3-D effects through the use of adaptive algorithms. As follow-up works, more complex LEFM problems
with non-trivial crack surfaces will be investigated.
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[13] E. Oñate and G. Bugeda. A study of mesh optimality criteria in adaptive finite element analysis. Engineering
Computations, vol. 10, pp. 307–321, 1993.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023


	Introduction
	G/XFEM for 3-D Linear Elastic Fracture Mechanics
	A ZZ-BD Error Estimator for 3-D LEFM
	h-Adaptive Algorithm
	h-Adaptivity for LEFM problems

	Numerical Experiments
	3-D Edge Crack Problem

	Conclusions

