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Abstract. In this paper, we address the problem of free and unforced vibration of nanoplates immersed in a trans-
verse electric field using the theory of non-local elasticity. The numerical model was obtained using the first-order
plate kinematic theory, which included the shear deformation (FSDT) and the approximation spaces in accordance
with the homogeneous “p” version of the G/XFEM method with regularity Ck, k = 2, 4. The scale effect is ap-
proached using the non-local elasticity theory, and moderate amplitude waves are taken into consideration using the
von Karmann geometric non-linearity. In this study an electric stationary field is obtained from a potential function
that satisfies Maxwell’s law for moving current and the electric potential boundary conditions on the free surface
of the plate. Investigations on the estimation of the first nonlinear frequency, as well as the stiffness-softening and
stiffness-hardening phenomena, are carried out for a simply supported nanoplate. The findings for the proposed
numerical models are contrasted with those attained using Lagrange C0 finite elements, a semi-analytical solu-
tion attained using Navier biharmonic modes, and results acquired using the Generalized Differential Quadrature
Method (GDQM) from published results. The GFEM approximation space demonstrated its ability to describe all
features of the problem at hand.

Keywords: G/XFEM, FSDT nanoplate, vibration, nonlocal elasticity, piezoelectric.

1 Introduction

Recent research on nanostructures with piezoelectric properties has gained centrality in the last decade due
to the growing interest of application in NEMS (Nanoelectromechanical Systems) as resonators, nanomotors and
nanogenerators, see He et al. [1], Wang [2], Galan et al. [3], and Xu and Wang [4] among others. This is because
the physical properties at the nanoscale size, such as thermal and electrical conductivity, outperform those of the
material at the macroscale, see Caglar et al. [5] and Huang et al. [6]. In this context, the dynamic behavior of
nanostructures has gained prominence in the technical and scientific communities, inspiring an extensive number
of investigations in this field. Recently, in addition to the classic approaches to nanoscale problems, which use
models such as Molecular Dynamics (MD) (see Belytschko et al. [7], Chowdhury and Okabe [8], and Galashev and
Rakhmanova [9]), very accurate, but also very time consuming from the computational point of view, mathematical
models using the principles of continuum mechanics have been used.

Regarding the continuum mechanics approach, some proposals have shown approximate satisfactory results
in relation to MD, such as the continuum mechanics micromorphic theory (PCMT), Eringen [10], and the non-
local elasticity theory (NET), Eringen [11]. Many studies have recently been conducted using nonlocal elasticity
theory to address free vibration and buckling issues in piezoelectric nanoplates subjected to a thermal gradient and
embedded in a transversal electric field. Some of these recent studies are cited in Liu et al. [12] to approach the
free vibrations problem with large deflection in piezoelectric nanoplates under the action of the electric field. In
Zeng et al. [13], the authors carried out a study accounting for the flexoelectric effect in the nonlinear vibration of
the functional graded piezoelectric nanoplates. In Asemi et al. [14] the authors study the application of the non-
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linear vibration in piezoelectric nanoplates to approach a nano-electromechanical resonator. The work of Su et al.
[15] address the issues of electro-mechanical vibration in functionally graded nanoplates with general boundary
conditions. These are just a few examples of works in this field, among a large number of articles that could be
mentioned here.

In this study, the authors address the issue of piezoelectric nanoplate’s nonlinear vibration in a transverse
electric field. The numerical model is obtained by using first order shear deformation theory (FSDT) (see Reddy
[16]) and the NET of Eringen [11]. The approximation spaces with regularity Ck, k = 2, 4 are obtained by
the homogeneous “p” version of the G/XFEM as in de Suarez and Rossi [17] and the transverse electric field
follows the same potential function as used in Sladek et al. [18]. The GFEM approxaimation space’s performance
is evaluated by comparing the findings to those obtained using the FEM-Lagrange C0 and the semi-analytical
solution obtained using the Navier Bi-harmonics modes. In addition, results based on classical elasticity are
obtained and compared to previous research. The approximations spaces’ capacity to describe stiffness-softening,
induced by a rise in the nanoscale coefficient, and stiffness-hardening phenomena, produced by an increase in the
electric field, is also investigated .

2 Galerkin finite element formulation

The matrix form of the eigenvalues problem associated with the Galerkin finite element method applied to
nonlinear vibrations of a piezoelectric nanoplate subject to a transverse electric field, see Fig. 1, can be written as:

[
K +Kµ +KNL(U)− ω2 (ML +Mµ)

]
U = 0 (1)

where K, Kµ, and KNL are the linear, the nonlocal, and the nonlinear stiffness matrices whereas M and Mµ

are the linear and nonlocal mass matrices, respectively. In this equation
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where B(0)
eL , B(1)

e , B(2)
e , N (0)

e , N (1)
e , N (2)

e , J , ∂ζ , ∂s, and J are explicitly shown in de Suarez and Rossi [17]

while Ii, i = 0, 1, 2 are the mass inertia moments shown explicitly in Reddy [16]. Nanoscale coefficient µ and
the Winkler foundation’s elastic constant κ are used in these equations to introduce the scale consideration and the
elastic medium, respectively. The displacement and rotation gradients are given by

∇(u)e =

 u,x u,y

v,x v,y

 ∼= J∂ζN e(0)U e,G
(0)
e = J∂ζN e(0, (7)
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Figure 1. Plate model: a) Plate under elastic foundation and electric potential; b) dimensions of the middle plane
of the plate.
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The second order partial derivatives vector used in the formulation of the Laplacian and second order gradient are
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where P (k), k = 0, . . . , 3 are the following Boolean operators
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In Eq. 4, the nonlinear deformation and the Laplacian matrix are
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and
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where the operators J−2,Jx,2 are explicitly shown in Zhang et al. [19]. The constitutive matrices A, Cs, D, F ,

and E are explicitly shown in Reddy [16], being F and E the piezoelectric constitutive matrices.
The internal normal force tensor and the piezoelectric normal force tensor are given by

N =

 Nxx Nxy

Nxy Nyy

 , NP = h

 c31V0 0

0 c31V0

 (15)

The nonlinear eigenvalue/eigenvector problem shown in Eq. 1 is solved by the Interactive Progressive Method
(IPM) in this work, as used in Sundararajan et al. [20]. However, in this work the effects of the internal forces are
not considered in the update of the nonlinear stiffness matrix. Also, for this algorithm’s operation it is necessary to
establish the scale parameter w/h, that is a fixed relationship between the maximum transverse displacement and
the height of the nanoplate section.

3 Numerical Results

The properties of the GFEM approximation space are now evaluated for the solution of the problem of free
nonlinear vibrations, with two studies in mind: the comparative result relative to analytical and benchmark solu-
tions, and the ability to capture the stiffness-softening and stiffness-hardening phenomena. Table 1 shows the main
characteristics of each strategy used to solve the problem and will assist in making comparisons. Here the Winkler
foundation’s is not considered in the analysis.

Table 1. Numerica models.

Strategy polinomial order num element NDOF

GFEM C2 4 6x6 Q4 3675

FEM C0 4 8x8 Q25 5053

Reference solution biharmonic modes (m = 20, n = 20) 10x10 Q4 2000

3.1 Comparative Results

The comparative results are obtained considering the isotropic plate shown in Fig. 1 with aspect ratios a/h =
1000 and a/b = 1 and mechanics properties defined by Young modulus E = 201.4 × 109 Pa, Poisson ratio
ν = 0.28, mass density ρ = 8166 kg/m3, and shear correction coefficient κS = 0.91. The results for the strategies
in Tab. 1 are presented in Fig. 2.

A. Result obtained by the analytical solution proposed by Chu and Herrmann [21];
B. Result obtained by FEM solution presented in Sundararajan et al. [20];
C. Result obtained by the Differential Quadrature Method (DQM) presented in Liu et al. [12];
D. Result corresponding to the GFEM C2 strategy shown in Tab. 1.

In Fig. 2b the error is obtained relatively to the Chu and Herrmann [21] solution and calculated by

Er =
|ω̄a − ω̄h|

|ω̄a|
× 100 (16)

where ω̄h = (ωNL/ωL)h, h = B,C and ω̄a = (ωNL/ω0)a, a = A. In Eq. 16 ωNL and ωL are the nonlinear

and linear frequency, respectively. Also, ω0 stands for the first analytical linear frequency obtained using Chu and
Herrmann [21] approach.
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(a) Normalized frequency vs. normalized amplitude. (b) Relative error (%) vs. normalized amplitude.

Figure 2. Graphical analysis of the comparative results.

Figure 2 shows the comparative results of strategies A-D. The poor result of the C strategy relatively to A
solution, shown in Figs. 2a and 2b, occurs by the consideration of the normal forces in the C strategy. This
consideration increases the stiffness of the plate and consequently an increase in the first natural frequency is
expected.

3.2 Stiffness-softening and Stiffness-hardening phenomena

The stiffness-softening and stiffness-hardening phenomena are analyzed by the strategies proposed in Tab. 1
considering a simply supported piezoelectric nanoplate with ratios a/h = 10 and a/b = 1. This phenomenon is
simulated by the increase of the nanoscale coefficient and the increase of the electric field intensity. The nanoplate
is constituted of PZT-4, with physical properties shown in Tab. 1. The nanoplate is immersed in a transverse
electric field, which is defined by

Ez(x, y, z, t) = −z e31
κ33

∇ ·ψ +
V0
h

(17)

where ψT =
{
θx θy

}
is the rotation vector, V0 is the electric potential in the boundary (x, y, h/2), eij , i =

1, . . . , 3, j = 1, . . . , 6 are de piezoelectric coefficients, and κii, i = 1, . . . , 3 the dielectric coefficients.

Table 2. Physical properties of PZT-4.

c11(GPa) c12(GPa) c13(GPa) c33(GPa) c44(GPa) c66(GPa)

132 71 73 115 26 30.5

e13(C/m
2) e15(C/m

2) e13(C/m
2) κ11(C/Vm) κ22(C/Vm) κ33(C/Vm)

−4.1 10.5 14.1 5.84× 10−9 5.84× 10−9 7.12× 10−9

Two cases of the scale effects on the first fundamental frequency are examined:

I Simulation of the stiffness-softening phenomenon produced by the increment of the nanoscale coefficient is
shown in Fig. 3a. In this study, the effects of the transverse electric field are not considered.

II Simulation of the stiffness-hardening phenomenon, shown in Fig. 3b, is obtained for a piezoelectric nanoplate
immersed in a transverse electric field, Eq. 17, through the increase of the positive electric potential in the
top free surface of the nanoplate (x, y, h/2) and for some values the nanoscale coefficient.

In these studies, the results are presented in terms of the normalized frequency

ω̄ = aω

√
I0
A11

. (18)
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(a) Simulation of the stiffness-softening phenomenon.
(b) Simulation of the stiffness-hardening phenomenon for dif-
ferent values of V0 and µ for w/h = 0.4.

Figure 3. Stiffness-softening and stiffness-hardening simulation.

The results shown in Fig. 3a demonstrate that the methodologies adopted adequately capture the stiffness-
softening process. For the three numerical models in the present study, the linear response exhibits very similar
behavior. However, when the nonlinear response is taken into account, the results demonstrate a considerable
discrepancy between the Semi Analytical model and the models generated with GFEM C2 and FEM C0. Fur-
ther analysis are been conducted to identify the source(s) for this deviation. Despite the small magnitude of the
deviations, more studies are being conducted to identify and comprehend the source(s) of this deviation.

The results for stiffness-hardening phenomenon are shown in Fig. 3b. Notice that when the nanoscale coed-
difient is taken into account the phenomenon is adequately described by the models derived from the GFEM C2

and the semi-analytical solution, but not by the FEM C0. This phenomena occurs because the second order par-
tial derivatives in the discretized Laplacian (∇2) and the second order gradient (∇ (∇w)) in the FEM-Galerkin
formulation cannot be accurately represented by the C0 approximation spaces.

4 Conclusions

In this study, the Galerkin formulation adapted to non-local elasticity for an isotropic nanoplate of piezoelec-
tric material was presented, considering the geometric non-linearity of von Karmann. The results obtained with
GFEM C2 and classical elasticity for the non-linear free vibration problem were close to those obtained in refer-
ence literature. The strategies used satisfactorily simulated the stiffness-softening phenomenon. On the other hand,
the simulation of the stiffness-hardening phenomenon produced by the transverse electric field was satisfactorily
represented only by the numerical models with high regularity approximation spaces. This study highlights the
relevance of the regularity of approximation spaces in approaching certain types of problems. In this specific case,
the model obtained with C0 FEM-Lagrange is not able to satisfactorily approximate the effects of the Laplacians
and the second-order gradients that appear in the Galerkin formulation of the problem.
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