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Abstract. IGL-GFEMgl is a multiscale framework proposed by H. Li, P. O’Hara, and C. A. Duarte in 2021 that
combines the IGL strategy with the GFEMgl. In the Iterative Global-Local method (IGL), two different meshes
are adopted. The global mesh is used to describe the global behavior of the structure. Local features are repre-
sented in the local mesh. The solution of the two meshes is coupled through an non-intrusive iterative algorithm
that exchanges displacements and enforces the equilibrium between them. The GFEMgl considers two scales of
representations, but the coupling is provided by the GFEM’s enrichment strategy. Finally, in the IGL-GFEMgl

framework, a third problem is defined, named mesoscale. The mesoscale works as a bridge between the two
methods (IGL and IGL-GFEMgl), allowing a non-intrusive coupling of the global problem FEM solution and the
meso-local scale solution provided by the GFEMgl. In this work, the commercial software Abaqus solves the global
problem and is coupled with an in-house computational platform where GFEMgl is already implemented. A thor-
ough investigation is performed over some IGL-GFEMgl parameters, such as the size of the mesoscale and the use
of acceleration techniques to improve the convergence of the method.

Keywords: Generalized Finite Element Method, Global-Local Analysis, Non-intrusive coupling, Multiscale anal-
ysis

1 Introduction

In the industry, engineers mostly count on commercial software thanks to their certifications for specific use
along with computation efficiency. However, even these pieces of software might not be capable of handling
spatial multiscale problems. Problems involving singularities, discontinuities, complex geometries, and localized
deformations, although commonly faced in the engineering applications, often challenge the formulation of the
Finite Element Methods (FEM). Modeling this class of problems can be burdensome or even not possible when
using FEM, and significant errors may be incorporated in the approximate solution [1, 2].

Due to recent advances in parallel computation, instead of embedding all the information in one massive
model, there is a trend to break problems of this class into smaller and more detailed ones [3]. Consequently,
this approach requires strategies to couple the results of all scales. These strategies are referred to as coupling
methods, which may be classified according to their intrusiveness level. A coupling method is more intrusive as
its implementation requires deeper modification of the involved solvers. When commercial software is involved,
non-intrusive algorithms are more appealing as code modification is generally not feasible.

Naturally, coupling between FEM and other numerical methods that overcome some of its limitations has been
investigated in the past few years. The Generalized Finite Element Method (GFEM) [4–9] and the Generalized
Finite Element Method with global-local enrichment functions (GFEMgl) [10, 11] are examples of this class of
methods. It is noteworthy that GFEM formulation is considered equivalent to the eXtended Finite Element Method
(XFEM) [12] and hereon the G/XFEM notation will be held. The G/XFEM has been successfully applied to solve
complex problems in the past decades. Due to some of its advantages over FEM [13], G/XFEM has drawn attention
and has recently been implemented in commercial finite element programs [14]. The GFEMgl implementations, on
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the other hand, remain restricted to research software so far and it is not available in program suites with industrial
appeal.

Considering the interesting features of non-intrusive coupling, Li, O’Hara and Duarte [15] recently proposed a
non-intrusive implementation of the GFEMgl. In this approach, the problem is divided into three scales. The global
scale may be solved by FE analysis. The GFEMgl approach is used at meso and local scales. Coupling between
FEM and GFEMgl results is performed through the Iterative Global-Local (IGL), a highly non-intrusive algorithm
proposed by Whitcomb [16]. This non-intrusive implementation of the GFEMgl is referred to as IGL-GFEMgl.

The IGL-GFEMgl is a brand-new strategy that provides a framework for the combination of industrial software
with the GFEMgl. As far as the authors are aware, there is no work investigating the influence of the IGL-GFEMgl’s
parameters on its approximate solution. This paper presents new investigations under the IGL-GFEMgl. In this
sense, the strategy was implemented to couple Abaqus and INSANE, an open-source software developed at the
Federal University of Minas Gerais which implements the GFEMgl [17–20]. Tests were performed in order to
study the following parameters: (a) tolerance of the IGL’s convergence criterion, (b) number of GFEMgl iterations,
(c) size of the mesoscale domain, and (d) use of convergence acceleration techniques.

2 The IGL-GFEMgl framework

2.1 A non-intrusive coupling method: Iterative Global Local

The Iterative Global-Local [16] is a non-intrusive coupling procedure based on the exchange of displacements
and forces between models. Although originally design for FE analysis, it can be easily implemented for other
methods. Figure 1 presents a reference problem for the presentation of the IGL. The global model concerns the
whole domain Ω̄ = Ω̄L ∪ Ω̄C , where Ω̄L is the local domain and Ω̄C is its complement regarding Ω̄. Then, the
interface between global subdomains is defined as Γ = Ω̄L ∩ Ω̄C .

R η η

Figure 1. The Iterative Global-Local (IGL) procedure.

The initial approximated solution to the global problem can be computed from

(KGC +KGL) · ũG = fG, (1)

and the solution ũG is then applied as prescribed displacement on the interface Γ of the local model. The local
solution can be computed from the system of equations of the local problem

KL · ũL = fL. (2)

Once it was supposed that KGL ̸= KL, we can assume that Ω̄L is not equally represented in eqs. (1) and (2).
Therefore the forces balance on Γ is not satisfied.

The IGL algorithm seeks to reduce these unbalanced forces by an iterative procedure. The idea is to compute
the forces at Γ in the complementary domain of the global model, ηΓ

GC , and compare it with ηΓ
L, the forces on Γ in
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the local model. The difference between these two vectors is called residual forces. The associated reaction vector
R is applied as a correction on Γ in the global problem. The updated global model can now be solved again, and
this process continues until a convergence criterion is satisfied. In conclusion, the IGL algorithm has the following
steps [15], that were schematically represented in fig. 1:

Step 1 Global solution: ũG is obtained by eq. (1).
Step 2 Local solution: ũL is obtained by eq. (2) using ũG as prescribed displacements at the interface Γ.
Step 3 Residual forces computation: ũG and ũL are used to compute the reactions at Γ in Ω̄C and Ω̄L,

respectively. The residual forces vectorR is computed by

R = −(ηΓ
L + ηΓ

GC) = − [(KL · ũL − fL) + (KGC · ũGC − fGC)] |Γ, (3)

Step 4 Global load vector correction: the residual vectorR is added to the global model load vector.
Step 5 Iteration: go back to Step 1 until the convergence criterion is satisfied.

Li, O’Hara and Duarte [15] proposed the L2-norm of the residual vectorR as a convergence measure for the
IGL. Then, a tolerance ϵ is arbitrarily chosen and the convergence criteria is satisfied when, at the iteration k,∥∥Rk

∥∥
∥R0∥

< ϵ, (4)

whereR0 is the residual of the first iteration.
The IGL procedure may be presented in an incremental form [3, 21], which implies that the algorithm is a

modified Newton method. Therefore, it can benefit from the acceleration techniques developed over the years for
this class of problem to overcome convergence limitations. In this work, two of those techniques were evaluated,
namely the static [22] and the dynamic relaxation [23].

2.2 IGL-GFEMgl for the solution of multi-scale problems

In a recent work, Li, O’Hara and Duarte [15] presented a solution strategy combining IGL and GFEMgl,
hereon called IGL-GFEMgl. Figure 2 presents the workflow of the method, in which the problem is divided into
three scales. The global scale covers the whole problem and there is no concern with modeling local features, and
the associatedmesh is usually coarse. Regions where local behaviors are expected define the local scale. Finally, the
mesoscale is an intermediate scale bridging global and local scale. The mesoscale is a subregion of the global scale
that contains the local features but neglects them, so its mesh will be similar to the global model. The mesoscale
work as the local scale of the IGL and the global scale of the GFEMgl. Information exchange between global and
meso scales are provided by IGL. As those scales are supposed to have matching meshes, this process is performed
exactly as proposed by Whitcomb [16]. On the other hand, meso and local scale are solved using GFEMgl strategy.

IGL

Prescribed 
displacements

Prescribed 
displacements

Global-Local 
enrichment

Residual
forces

GFEMgl

Figure 2. Iterative Global Local solution applied to the G/XFEM with global-local enrichment.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Porto, Portugal, November 13-16, 2023



On the parameters investigation of a Non-Intrusive Multiscale Framework Structural Analysis

3 Numerical Results

The investigation of the IGL-GFEMgl parameters is now presented through a set of numerical simulations of
elastic linear problems. It is worthy to mention that the IGL-GFEMgl implementation was validated by standard
FE analysis using very fine meshes [24]. Figure 3 presents the problem used in this section. A plate with a central
square hole is loaded under plane stress condition. The problem behavior is linear elastic and the orifice is the only
local feature. The elasticity modulus is E = 2 · 1011 in consistent units (c.u.) and the Poisson’s ratio is ν = 0.30.

The three models used in IGL-GFEMgl are built with linear quadrilateral elements Q4. For the global and
meso models, a regular mesh was defined with elements of the same size of the hole, i.e., 5.0. The local model has
mesh size of 2.5. The adopted meshes are also presented in Figure 3. The three models have together 690 degrees
of freedom. For comparison, two FE models were defined: Model A with mesh size of 2.5 – equivalent to the one
used in the local scale – with 1,064 degrees of freedom; Model B, providing a reference solution, with mesh of size
0.625 and 15,680 degrees of freedom.

Tolerance ϵ. To investigate the influence of the tolerance in the IGL-GFEMgl solution, the problem from Figure 3
was solved using five distinct values of ϵ: 10−2, 10−3, 10−5, 10−7 and 10−10. Figure 4 presents a plot comparing
the results in terms of strain components, indicating insignificant change in IGL-GFEMgl results when ϵ < 10−5.
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Figure 3. Definition of the problem and IGL-
GFEMgl models (consistent units).

Figure 4. Strain components at Points 1 and 2
for different ϵ.

GFEMgl iterations. Li, O’Hara and Duarte [15] suggest one GFEMgl iteration (nGL = 1) for most problems.
Despite that, there is still interest in investigate how nGL affects the IGL-GFEMgl solution. In the GFEMgl, the
global-local enrichment changes the shape functions of the global model � which in the scope of the IGL-GFEMgl

is the mesoscale model. Hence, the stiffness matrix of the mesoscale is modified by the global-local enrichment.
The convergence rate of the IGL procedure depends on the stiffness gap between the models, i.e., global and meso
model in the scope of the IGL-GFEMgl. In this sense, it is worth investigating the influence of nGL in the IGL
convergence. The problem presented in fig. 3 was then solved using nGL = 1, 2, 3, and 6.

Table 1 compares the relative residual force (see eq. 4) at each IGL iteration for different values of nGL.
Despite the slight change in the results when nGL goes from 1 to 2, the number of GFEMgl iterations does not seem
to impact the quality of the IGL-GFEMgl for this class of problem. The same can be stated regarding the converge
behavior of the framework. In this sense, Li et al. [15] recommendation for using nGL = 1 seems to a good choice
as nGL has a great impact on the execution time [21].

Mesoscale. The model defined in fig. 3 was derived into three versions, as show in fig. 5. The only difference
between them is the mesoscale extension. Model M1 is equivalent to the original model. Model M2 has only one
layer of elements between the global-meso interface and the local domain, whereas Model M3 has no elements in
this region, i.e., the mesoscale and local domain cover the exact same region.

We now take the execution time of Model M1 as reference, i.e. its relative execution time is 1.0. The model
M2 provided the fastest solution, at a mark of 0.981. Both M1 and M2 solutions needed six IGL iterations until
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Table 1. IGL-GFEMgl convergence for different nGL.

IGL iteration
Relative residual force

nGL = 1 nGL = 2 nGL = 3 nGL = 6

0 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
1 6.2556E−02 6.2526E−02 6.2524E−02 6.2524E−02
2 3.8612E−03 3.8620E−03 3.8618E−03 3.8618E−03
3 2.3807E−04 2.3829E−04 2.3827E−04 2.3827E−04
4 1.4677E−05 1.4701E−05 1.4700E−05 1.4700E−05
5 9.0486E−07 9.0697E−07 9.0686E−07 9.0688E−07

30.0
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106

5.0

Point 1 (55.0, 20.0)
Point 2 (55.0, 15.0)5.0106

GFEMgl

IGL

GFEMgl

IGL

GFEMgl

IGL

Model M1 Model M2 Model M3

Global scale

Mesoscale

Local scale

Global-local enrichment

Figure 5. Models regarding mesoscale size investigation (consistent units).

convergence, however, M2 was a little bit faster as its mesoscale is reduced compared with M1. For model M3, the
results indicate the opposite as the relative execution time is 1.250. The solution time increased in comparison to
M1 even though the mesoscale is smaller in M3. This is explained by the increase in number of iterations required
until convergence, as M3 performs eight IGL iterations. The mesoscale size impacts on the convergence of the
IGL-GFEMgl. As illustrated by the fig. 6a, the convergence rate gets slower as the layers of elements between the
local domain and the global-meso interface is reduced. Even though the position of Γ is different in each model, it
does not affect the solution quality, as shown in fig. 6b.

(a) Convergence rate. (b) Vertical displacement at the bottom edge.

Figure 6. Results of models M1, M2 and M3.

Acceleration techniques. In the scope of the IGL-GFEMgl, the IGL procedure diverges if the mesoscale model is
sufficiently stiffer than global model. In order to enforce this scenario, the problem from fig. 3 was modified so the
elasticity modulus of the meso and local models, denoted EM , is set to be greater than E.
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The static relaxation [22] was applied for the case when EM = 3.0E. Various values of the relaxation factor
ω were used. We should first note that for ω = 1.0, which is equivalent to the standard solution, the solution does
not converge. Although the static relaxation improved convergence, as per fig. 7a, its performance depends highly
on the value of ω. In addition, the fact that ω holds the same value throughout the entire analysis is a limitation in
itself. The dynamic relaxation [23] overcomes these limitations.

Figure 7b plots the convergence rate using dynamic relaxation for the solution of a set of ratios EM/E. For
EM = 3.0E, we note that convergence is closer to the best result obtained using static relaxation. In fact, over the
iterations, the value of ωk tends to 0.35. Figure 7b also shows that, for a given problem, the convergence rate is
not influenced by the ratio EM/E when the dynamic relaxation is employed.

(a) using static relaxation. (b) using dynamic relaxation.

Figure 7. Convergence of the IGL-GFEMgl with acceleration techniques.

4 Conclusions

This paper briefly presented a parameter investigation of the IGL-GFEMgl regarding elastic linear problems.
We highlight the influence of mesoscale extension on IGL-GFEMgl performance. In terms of solution accuracy,
the results suffered very little influence of the number of element layers between the local domain and the global-
meso interface Γ. Nevertheless, numerical simulations found a trade-off relationship between the mesoscale size
and the computational cost of the solution. While models with reduced mesoscale can be solved faster, the IGL
convergence rate is significantly slower when the Γ is too close to the local domain. In addition, for the class
of problem under study, the results indicate that the dynamic relaxation reduces the relevance of the stiffness gap
between the global and mesoscales in solution convergence rate.
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