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Abstract. It is proposed the application of Sobol’ indices as importance measures for the dimensionality reduction 

of probability spaces, in probabilistic reliability assessment. The indices are computed approximately using a local 

approximation of the response functionals, via an adjoint method. As a numerical example, it is considered the 

Reliability-based Robust Design Optimization (RBRDO) of a composite shell structure. The problem is defined 

as the bi-objective minimization problem of the total weight and the determinant of the variance-covariance matrix 

of the structural response functionals, subject to a deterministic displacement constraint and a probabilistic stress 

constraint. The goal is to study how the dimensionality reduction in reliability assessment affects the RBRDO of 

composite laminate structures. The results show that, from a total of 16 random mechanical properties, only 5 to 

8 are important, while explaining at least 99.7% of the uncertainty. It is achieved a drastic reduction in computing 

times between 2 to 12 times faster, in reliability assessment, and 2 times faster in the overall RBDO of composite 

laminate structures. 
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1  Introduction 

The design of composite laminate structures is particularly difficult, due to the uncertainty associated with 

the main design parameters and material properties. Optimal designs are solutions above the average and are 

therefore more sensitive to uncertainty. In this work, uncertainty is quantified according to the concepts of 

robustness and reliability. Robustness is a measure of the variability associated with the performance and/or the 

response of a structural system. An optimization methodology promoting a systematic analysis and control of 

structural variability is called Robust Design Optimization (RDO) [1]. Here, reliability is understood as a 

probabilistic measure of structural failure, due to random uncertainty. An optimization methodology promoting 

the systematic analysis and control of probabilistic failure is called Reliability‐based Design Optimization (RBDO) 

[2]. Recently, the combination of both RDO and RBDO has been explored in the design optimization of composite 

laminate structures, however with increased computational effort, mostly due to highly dimensional probability 

spaces. Such design methodology is called Reliability-based Robust Design Optimization (RBRDO) [3]. An 

analytical dimensional reduction criterion, based on the approximate solution of Sobol’ indices, was recently 

proposed [4]. When a first-order approximation of said indices is considered only an adjoint system of equations 

is required to be solved. In problems where the majority of the probability density of random variables is 

concentrated around the mean-values, the proposed first-order (local) approximation is capable of 

capturing/quantifying the importance of the random variables relatively to the system response functionals, with 

relatively low computational cost, when compared to most dimensionality reduction methods employing global 

sampling methods [4].  

The aim of this work is to implement an efficient dimensional reduction method, based on the importance 

analysis theory of Sobol’, to systematically determine the important random variables in the inner loop of reliability 

assessment of each design solution found during the RBRDO of composite structures. 
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2  Sobol’ Importance Analysis 

A proper definition of importance is necessary. Here, importance is a measure of the reduction in the variance 

of a stochastic function if one or more random variables are fixed on a given value. Let 𝐱 ∈ Ω be a generic vector 

of statistically independent random variables defined in a probability space (Ω, ℱ, 𝑃) and 𝑔: Ω → ℝ a square-

integrable stochastic function over Ω w.r.t. the probability measure 𝑃. We establish the partial variances [5]: 

 𝑉𝑖   = var(E(𝑔(𝐱)|𝑥𝑖)) , 𝑉𝑖,𝑗 = var (E(𝑔(𝐱)|𝑥𝑖 , 𝑥𝑗)) − 𝑉𝑖 − 𝑉𝑗 , … (1) 

where E(∙ |𝑥𝑖) is the conditional expectation with respect to all random variables except 𝑥𝑖, and so forth for all 

possible combinations of random variables. Then, Sobol’ indices are uniquely defined as the ratio between each 

partial variance and the total variance of 𝑔 [5]: 

 

𝑆𝑖   =
var(E(𝑔(𝐱)|𝑥𝑖))

var(𝑔(𝐱))
 , 𝑆𝑖,𝑗 =

(var (E(𝑔(𝐱)|𝑥𝑖 , 𝑥𝑗)) − 𝑉𝑖 − 𝑉𝑗)

var(𝑔(𝐱))
, … 

 

(2) 

such that: 

 

∑ 𝑆𝑖

𝑁

𝑖=1

+ ∑ 𝑆𝑖,𝑗

𝑁

𝑖<𝑗

+ ⋯ + 𝑆1,2,…,𝑁 = 1 

 

(3) 

where 𝑆𝑖 is the first-order Sobol’ index, w.r.t. 𝑥𝑖, 𝑆𝑖,𝑗 is the second-order Sobol’ index, w.r.t. (𝑥𝑖 , 𝑥𝑗), and so on. 

2.1 Analytical approximate solution by Propagation of Moments 

Based on a multilinear interpretation of the theory of propagation of moments [4], consider the following. 

Let 𝐼 = {𝑖1, … , 1𝑁} be a set of 𝑁 indices, in ascending order, and 𝐼′ ⊆ 𝐼 with cardinality 𝛼𝐼′ ≤ 𝑘 ≤ 𝑁, containing 

combinations of 𝛼𝐼′ ordered indices. Thus, the partial variances in (2) become: 

 
𝑉𝐼′ ≃ (

𝜕𝛼
𝐼′ 𝑔

∏ 𝜕𝑥𝑖𝑖∈𝐼′
)

𝛍𝐱

2

∏ Var(𝑥𝑖)
𝑖∈𝐼′

 (4) 

and the total variance becomes var(𝑔(𝐱)) ≃ ∑ 𝑉𝐼′𝐼′ . Finally, the Sobol’ indices in (2) are approximated by: 

 
𝑆𝐼′ ≃

𝑉𝐼′

∑ 𝑉𝐼′𝐼′
∈ [0,1] (5) 

Thus, a random variable 𝑥𝑖𝑘
, with 𝑖𝑘 ∈ 𝐼 and 𝑘 ≤ 𝑁, is said to be important if the sum of all Sobol’ indices 

w.r.t. 𝑥𝑖𝑘
 is greater than or equal to a non-negative scalar ε. That is: 

 𝑆𝑖𝑘
+ ∑ 𝑆𝑖𝑘,𝑗

𝑗∈𝐼
+ ∑ 𝑆𝑖𝑘,𝑗,𝑙

𝑗<𝑙∈𝐼
+ ⋯ + 𝑆𝑖1,…,𝑖𝑁

≥ 𝜀 
(6) 

Of particular interest, for the current case study, is the approximation by a first-order Taylor polynomial, for 

which only the main effect indices are non-null. From (5), Sobol’ indices become: 

 
𝑆𝑥𝑖

= (
𝜕𝑔

𝜕𝑥𝑖

)
𝛍𝐱

2 var(𝑥𝑖)

var(𝑔(𝐱))
 (7) 

3  RBRDO of composite Laminates 

Let 𝐳 ∈  ΩZ be a vector of random design variables, whose vector of mean‐ values 𝛍𝐳 contains the design 

variables of the problem. Additionally, consider a vector 𝛑 ∈  ΩΠ of random structural parameters, whose mean 

values 𝛍𝛑 are inputs of the problem. The vectors of standard deviations 𝛔𝐳 and 𝛔𝛑 are constant and are an input of 

the problem, as well. Thus, a functional 𝑔𝑖(𝐳, 𝛑) ∶  ΩZ × ΩΠ → ℝ is called the i‐th stochastic response functional 
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of the structural system and 𝑔𝑖(𝛍𝐳, 𝛍𝛑) its deterministic realization. 

The system response functionals are defined in terms of the displacement and the stress responses of 

composite laminate structures. The structural analysis of composite laminate structures is based on a displacement 

formulation of the Finite Element Method (FEM), in particular the shell finite element model developed by Ahmad 

et al. [6]. Generically, let 𝑈 ⊆ ℝ𝑀 be the state space of state variables 𝐮 (displacements) and Ω = ΩZ × ΩΠ ⊆ ℝ𝑁 

a sample space. In this work, it is considered the linear equilibrium of structures, under static loading conditions, 

defined by a mapping Ψ: 𝑈 × Ω → 𝑈, such that the following (implicit) state equation: 

 Ψ(𝐮(𝐳, 𝛑), 𝐳, 𝛑) = 0 ⟺ 𝐊𝐮 − 𝐟 = 𝟎 (8) 

holds, where 𝐊(𝐳, 𝛑) is the stiffness matrix and 𝐟 the load vector. The applied geometric discretization of the 

physical system [6] implies calculating the displacement and stress fields in specific points identified by the 

coordinates (𝑒, 𝑝, 𝑘), where 𝑒 is the element number, 𝑝 is the ply number and 𝑘 is the integration point. Hence, the 

deterministic response functional 𝑔1(𝛍𝐳, 𝛍𝛑), associated with the critical displacement, is given by: 

 𝑔1(𝛍𝐳, 𝛍𝛑) =
max 𝑢𝑖(𝑒,𝑘)

𝑢𝑎

− 1 
(9) 

where 𝑢𝑎 is the allowable displacement value, related with structural design. The stress state is characterized by a 

scalar measure of structural integrity. To account for the coupling between failure modes, the Tsai‐Wu quadratic 

failure criterion is applied, returning the parameter 𝑅 known as the Tsai number (𝑅 > 1 meaning safety) [7]. The 

deterministic response functional associated with the critical stress state of the structure is given by:  

 
𝑔2(𝛍𝐳, 𝛍𝛑) =

min 𝑅(𝑒,𝑝,𝑘)

𝑅𝑎

− 1 
(10) 

where 𝑅𝑎 is the allowable Tsai number. 

3.1 Robustness Assessment 

As a robustness measure, it is considered the determinant of the variance–covariance matrix, 𝐂, associated 

with the stochastic displacement and stress functionals, whose components are given by: 

 
cov(𝑔𝑖 , 𝑔𝑗) ≃ ∑ (

𝜕𝑔𝑖

𝜕𝑧𝑘

)
𝛍𝐳

(
𝜕𝑔𝑗

𝜕𝑧𝑘

)
𝛍𝐳

𝜎𝑧𝑘
2

𝑁𝑧

𝑘=1
+ ∑ (

𝜕𝑔𝑖

𝜕𝜋𝑘

)
𝛍𝛑

(
𝜕𝑔𝑗

𝜕𝜋𝑘

)
𝛍𝛑

𝜎𝜋𝑘
2

𝑁𝜋

𝑘=1
 (11) 

based on a first-order Taylor approximation of the response functionals and with all partial derivatives calculated 

via an adjoint method. 

3.2 Reliability Assessment 

In structural reliability, a functional 𝑔 ∶ 𝑈 × Ω → ℝ, with both implicit and explicit dependence on (𝐳, 𝛑) is 

called limit-state function; and a probability space (Ω, ℱ, 𝑃), with ℱ = {∅, 𝐷𝑓 . 𝐷𝑠 , Ω}, is called uncertainty space, 

where 𝐷𝑓 = {(𝐳, 𝛑) ∈ Ω ∶ 𝑔(𝐳, 𝛑) < 0} and 𝐷𝑠 = 𝐷𝑓
̅̅ ̅ are disjoint subsets of Ω, called the failure space and the 

safety space, respectively. The structural probability of failure is here estimated indirectly by the identification of 

the point on the failure surface, 𝑔(𝐳, 𝛑) = 0, with the greatest probability density. In the space of independent 

standard normal random variables 𝐲~𝑁(𝟎, 𝟏), the identification of such point is a minimization problem: 

 min
𝐲

‖𝐲‖

subject to: 𝐺(𝐲) = 0

 (12) 

where 𝐲 = 𝑇(𝐳, 𝛑), 𝑇: Ω → 𝑌 is an invertible transformation and 𝐺(𝐲) = 𝑔(𝑇−1(𝐲)). The solution to the problem 

is called the most probable failure point (MPP), 𝐲𝐌𝐏𝐏, and 𝛽𝐻𝐿 = ‖𝐲𝐌𝐏𝐏‖ is the Hasofer-Lind reliability index [8], 

such that the probability of failure is approximately equal to [2,8]: 
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 𝑝𝑓 ≃ Φ(−𝛽𝐻𝐿) (13) 

3.3 Reliability-based Robust Design Optimization problem 

The proposed RBRDO problem of composite laminate structures is, thus, defined as follows: 

 min𝛍𝐳∈Ω𝑍
𝐟(𝛍𝐳, 𝛍𝛑) = (𝑊(𝛍𝐳, 𝛍𝛑), det 𝐂𝛗)

subject to: 𝑔1(𝛍𝐳, 𝛍𝛑) ≤ 0

𝛽𝐻𝐿(𝛍𝐳, 𝛍𝛑) ≥ 𝛽𝑎

𝜇𝑧𝑖
𝑙𝑜𝑤 ≤ 𝜇𝑧𝑖

≤𝜇𝑧𝑖

𝑢𝑝

 (14) 

where 𝑊 is the total structural weight, 𝛽𝑎 is the allowable reliability index and 𝜇𝑧𝑖

𝑢𝑝
 and 𝜇𝑧𝑖

𝑙𝑜𝑤  are upper and lower 

boundaries of the design variables, respectively. 

4  Numerical application 

In the present study, four sources of uncertainty are considered and divided into two sets of variables: random 

design variables, 𝐳, and random parameters, 𝛑. They are organized as follows: material properties, 𝐦 ⊆ 𝛑, point 

loads, 𝐩 ⊆ 𝛑, ply angle of the laminates, 𝜃 ⊆ 𝐳, and laminate thicknesses, 𝐡 ⊆ 𝐳. Depending on the uncertainty 

quantification measure (robustness or reliability), the sources of uncertainty differ. In robustness assessment, 

uncertainty is propagated through the random design variables 𝐳 and the random parameters 𝛑. The mean values 

of the random design variables 𝛍𝐳 are the design variables of the RBRDO problem, thus varying between design 

solutions. In reliability assessment, the uncertainty of the system is propagated only through the mechanical 

properties 𝐦. Furthermore, it is assumed that the random material properties follow 𝐦 ∼  𝑁(𝛍𝐦, 𝛔𝐦). Regarding 

the Sobol’ importance analysis, the proposed dimensional reduction criterion is applied solely to the reliability 

assessment inner-cycle of each design solution generated during the optimization process, because it is the most 

expensive part of the design optimization process. In structural design problems, lower‐order approximations are 

often preferred. For the current problem, it is considered a first‐order approximation (see (7)) and a threshold value 

of 𝜀 = 0.001. Hence, a random mechanical property 𝑚𝑖, for 𝑖 = 1, … , 𝑁𝑚, is considered important if 𝑆𝑚𝑖
≥ 0.001. 

The algorithm used to solve the bi‐objective RBRDO problem is the Bi‐level Dominance Multi‐Objective 

Genetic Algorithm (MOGA‐2D) [9]. The algorithm searches the design space to find multiple Pareto‐optimal 

solutions in parallel, using two simultaneous populations, namely, the short population, 𝐒𝐏𝑡, and the enlarged 

population 𝐄𝐏𝑡, at each generation 𝑡. It performs using the concept of local constrain-dominance at the 𝐒𝐏𝑡, storing 

the nondominated solutions into the 𝐄𝐏𝑡. 

The Hasofer-Lind reliability index problem, in (12), is solved by the Hybrid micro-Genetic Algorithm 

(HmGA), with deterministic operators developed specifically for equality-constraint handling, namely the Genetic 

Repair and the Region Zooming mechanisms. The algorithm further relies on the dynamics between highly elitist 

and highly disruptive stochastic operators and works on a mixed real-binary genotype space [10]. The global 

convergence, with probability 1, to the global optimum reliability index was mathematically demonstrated in [11]. 

4.1 Cylindrical shell structure 

As a numerical example, it is considered a clamped cylindrical laminated shell structure. Nine vertical loads 

of 𝑃 = 11.5 kN are applied on the side AB. The structure is divided into four laminates (two elements per 

laminate), each with five layers and stacking sequence [+𝜃/−𝜃/0/−𝜃/+𝜃]. The ply angle 𝜃 is referenced to the 

x-axis. Variables ℎ𝑖, 𝑖 = 1, … ,4, denote the laminates’ thickness, as show in Figure 1. A composite material built 

with the carbon/epoxy system denoted T300/N5208 [12] is considered. The elastic constants of the orthotropic ply 

are the longitudinal elastic modulus 𝐸1, the transversal elastic modulus 𝐸2, the in-plane shear modulus 𝐺12 and the 
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in-plain Poisson’s ratio 𝑣12. The ply strength properties are the longitudinal tensile strength 𝑋, the longitudinal 

compression strength 𝑋′ , the transversal tensile strength 𝑌, the transversal compression strength 𝑌′ and the shear 

strength 𝑆. The mean-values of the material properties are in Table 1. Overall, the vector of random design 

variables, 𝐳, contains four laminate thickness variables and one ply angle variable (common to all laminates).The 

vector of random parameters, 𝛑, contains nine point loads, and sixteen material properties (four per laminate) 

grouped in vector 𝐦 = (𝐸1
𝑗
, 𝐸2

𝑗
, 𝑌𝑗 , 𝑆𝑗), where 𝑗 = 1, … ,4 is the laminate number.  Finally, the allowable critical 

displacement is 𝑢𝑎 = 8 cm, the allowable critical Tsai number is 𝑅𝑎 = 1 and the allowable reliability index is 

𝛽𝑎 = 3.0. The standard deviations of the random variables are set to 6% of the mean values. 

 

Figure 1. Cylindrical shell structure with point loads distribution 

Table 1. Average properties of the carbon/epoxy T300/N5208 [12]. 

𝑬𝟏 [𝐆𝐏𝐚] 𝑬𝟐 [𝐆𝐏𝐚] 𝑮𝟏𝟐 [𝐆𝐏𝐚] 𝝂𝟏𝟐 

181.00 10.30 7.17 0.28 

𝑿; 𝑿′[𝐌𝐏𝐚] 𝒀; 𝒀′[𝐌𝐏𝐚] 𝑺 [𝐌𝐏𝐚] 𝝆 [𝐤𝐠/𝐦𝟑] 

1500; 1500 40; 246 68 1600 

4.2 Results 

The goal of this numerical application is to study how the dimensional reduction of the uncertainty spaces, 

associated with reliability assessment, affects the RBRDO of composite laminate structures. Conclusions are 

drawn by comparison with the results obtained with without any dimensional reduction. To distinguish between 

the two cases, consider RBRDO0 (for ɛ =  0) and RBRDOε (for ɛ =  0.001). As a first comment, notice that the 

first‐order partial derivatives of the structural response functionals are calculated only once, for each design 

solution found by the MOGA-2D algorithm. 

Figure 2 shows the non-dominated fronts of the problem, obtained with both the RBRDO0 and RBRDOε 

models, after 300 generations. Overall, both models converged to the same region of the objective space, indicating 

that the dimensionality reduction didn’t affect the design optimization process. However, there is a considerable 

difference in the computing times necessary to achieve both fronts: the RBRDO0 model took about 27 h to complete 

the design process, while the RBRDOε took about 14.5 h, under the same working conditions (Intel(R) Core(TM) 

i7‐6700 CPU @ 3.40Ghz). It represents an improvement of the computing times of 1.8 times.  

The computing times of reliability assessment were also subject to comparison. To avoid a biased analysis, 

20 solutions of the non-dominated front obtained by the RBRDO0 model (no dimensional reduction) were selected, 

and their reliability index calculated independently, with and without dimensional reduction. On Figure 3, it is 

seen that, without dimensional reduction (on the left), the HmGA took between 4 to 12 minutes to compute each 

reliability index. On the right, it is seen that, under the same convergence criteria, the HmGA took 4 to 6 minutes 

to converge (black bars), while achieving better predictions of the reliability index. However, by relaxing the 
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convergence criteria of the HmGA (see [4, 10] for details), it is found that the algorithm converges to similar 

results as those obtained without dimensional reduction in just 0.5 to 2.5 minutes, being 2 to 12 times faster. 

Overall, for all the design solutions obtained by the RBRDOε model, during the entire optimization process, 

it is found that only 5 to 8 random material properties are classified as important. It represents a reduction of at 

least half of the number of dimensions, in reliability assessment. Choosing four different non-dominated solutions 

of the RBRDOε model (identified with black circles in Figure 2), it is found that the important material properties 

alone explain at least 99.77% of the uncertainty in the vicinity of the mean-values. In other words, at least 99.77% 

of the uncertainty is confined to the important dimensions and variations in the values of the non-important material 

properties will have a negligible effect on the value of the reliability index. Table 2 shows the values of Sobol’ 

indices of the important random variables, for each of the selected non-dominated solutions. 

 

Figure 2. Non-dominated fronts of the RBRDO problem, obtained with the RBRDO0 and RBRDOε models. 

 

Figure 3. Computing times of reliability assessment, with and without dimensional reduction, for 20 

nondominated solutions of the RBRDO0 model. 

Table 2. Sobol’ indices of selected non-dominated solutions obtained by the RBRDOε model. 
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5  Conclusions 

An analytical dimensional reduction criterion of the uncertainty spaces associated with reliability assessment, 

as proposed earlier in [4], is considered. The criterion is based on the approximate solution of Sobol’ indices, based 

on multilinear Taylor polynomial approximations of the limit‐state function. A first‐order approximation was 

considered and the partial derivatives were calculated by an adjoint method, only requiring an adjoint system of 

equilibrium equations to be solved. The criterion was then applied to a Reliability‐based Design Optimization 

(RBRDO) of composite laminate structures, solved exclusively with evolutionary algorithms (EAs), aiming to 

reduce the number of random mechanical properties considered in reliability assessment. As a numerical example, 

it was considered a composite shell, with four laminates. The results show that, from a total of sixteen random 

mechanical properties considered in reliability assessment, only five to eight are considered as important. In fact, 

the important random variables explain at least 99.7% of the uncertainty space, which is also the likelihood of the 

reduced uncertainty space containing the true MPP. Thus, the number of possible genetic combinations explored 

in the reliability assessment inner-cycle is exponentially smaller. Consequently, the proposed dimensional 

reduction allowed the RBRDO problem to be solved almost twice as fast. At the same time, the numerical results 

were identical to those obtained without any dimensional reduction. Therefore, demonstrating the goodness of the 

proposed method. 
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