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Abstract. This study discusses a novel explicit time-marching procedure for solving acoustic problems in the time 

domain. The procedure is designed to adapt to the characteristics of the spatially discretized model, providing a 

fully automated and highly effective solution. The approach is second-order accurate, explicitly formulated, and 

self-starting, offering the advantages of adaptive algorithmic dissipation and extended stability limits. 

Furthermore, the paper discusses automated subdomain/sub-cycling splitting procedures that enhance the 

performance of the proposed formulation. By partitioning the model domain into multiple subdomains based on 

the discretization properties, different time-step values can be utilized to ensure stability and enable more precise 

and efficient analyses. The method incorporates adaptive values for the time integration parameters, which are 

determined based on the characteristics of the spatial discretization. This locally-defined self-adjustable 

formulation establishes a link between the spatial and temporal solution procedures, better compensating for their 

errors. The paper presents and discusses expressions for the adaptive time integration parameters and the limiting 

time-step values of the discretized domain elements. Finally, numerical results are presented at the end of the paper, 

comparing them to those obtained using standard techniques, thereby illustrating the performance of the discussed 

approach. 
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1  Introduction 

Wave propagation models involve governing equations that require both spatial and temporal discretization 

techniques for their numerical solutions. Typically, in this case, space and time domains are separately analyzed, 

and spatial discretization methods are initially applied. This process generates a semi-discrete time-domain system 

of equations, which is then solved using a time-marching procedure. Finite element formulations based on local 

approximations have been extensively used in engineering to solve problems based on partial differential 

equations. While local approaches are commonly employed for spatial discretization, they are not as commonly 

used for time integration. In such cases, local approximations have been mostly considered just by defining the 

time-step value, often utilizing adaptive time stepping techniques and/or multi-time-steps/sub-cycling splitting 

procedures [1-7].  

A new explicit time-integration procedure, incorporating self-adjusting time-integrators, is here discussed to 

advance the development of locally defined time-marching formulations. This procedure is combined with 

adaptive time-steps/sub-cycling splitting techniques, resulting in a highly effective approach for solving problems 

in the time domain [7]. The time-steps and time-integration parameters of this method are locally computed, taking 

into account the adopted spatial discretization and model properties. This automated formulation eliminates the 

need for user decisions, effort, and/or expertise. As a result, this methodology is highly recommended for regular 

use in commercial codes. In the current methodology, the time-integration parameters are designed to attenuate 

spurious high-frequency modes while preserving the influence of significant low-frequency modes, resulting in a 

very accurate dissipative time-marching technique. The efficacy of the solution procedure can be further enhanced 

by implementing appropriate multiple time-step values throughout the model, as demonstrated by sub-cycling 

splitting techniques [4-7]. In this case, since the time-integration parameters of the method also depend on the 

considered time-step size, by considering appropriate multiple time-step values and employing sub-cycling 
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splitting techniques, these parameters may be better evaluated, further enhancing the effectiveness of the solution 

procedure. 

The present formulation stands as a second-order accurate, truly explicit, truly self-starting approach, and it 

offers extended stability limits, as well as advanced controllable algorithm dissipation. In this manuscript, acoustic 

analyses and geophysical applications are mainly focused, although the discussed technique can be applied to 

analyze innumerous wave propagation models. Geophysics often involves the analysis of heterogeneous domains 

comprising multiple layers of different materials. In such cases, automatic sub-cycling techniques have proved to 

be valuable as they enable efficient analysis of these distinct layers or media by dividing them into appropriate 

subdomains [5-7]. 

2  Governing equations and time integration strategy  

 The governing equation describing a semi-discrete wave propagation model may be written as: 

 

𝐌𝐔̈(t) + 𝐂𝐔̇(t) + 𝐊𝐔(t) = 𝐅(t), (1) 

 

where 𝐌, 𝐂, and 𝐊 stand for the mass, damping, and stiffness matrix, respectively. The acceleration, velocity, and 

displacement vectors of the system are represented by 𝐔̈(t), 𝐔̇(t) and 𝐔(t), respectively, while the external force 

acting on the system is represented by vector 𝐅(t). The initial conditions are defined as 𝐔0 = 𝐔(0) and 𝐔̇0 =

𝐔̇(0), representing the initial displacement and velocity vectors, respectively. As this manuscript focuses on 

explicit analyses, lumped mass matrices are used to define the discretized model described above, as usual. This 

approach avoids the need to solve systems of algebraic equations when using truly-explicit time-marching 

formulations, leading to significantly more efficient analyses. Additionally, classical Rayleigh damping is 

considered in this paper, where the viscous damping matrix 𝐂 is assumed to be proportional to the mass and 

stiffness matrices of the model; i.e., 𝐂 = αm𝐌 + αk𝐊, where αm and αk are constants of proportionality, providing 

a straightforward representation of damping effects in the system. 

The time-integration procedure discussed in this paper is an extension of a previous methodology presented 

by Soares [8], which proposed three truly explicit time-marching procedures utilizing appropriate coefficients and 

chained compositions of stiffness and damping matrix multiplications to achieve second-, third-, and fourth-order 

accuracy in time-domain solutions. The current time-integration procedure can be described by the following 

recurrence relationships: 
 

𝐌𝐕1 = ∫ 𝐅(t) ⅆt

tn+1

tn

− Δt[𝐂𝐔̇n + 𝐊(𝐔n + ½Δt𝐔̇n)], (2a) 

𝐌𝐕2 = Δt𝐂𝐕1, (2b) 

𝐔̇n+1 = 𝐔̇n + 𝐕1 − ½𝐕2, (2c) 

𝐌𝐕3 = Δt𝐊(μ1Δt𝐔̇n+1 + μ2Δt𝐔̇n), (2d) 

𝐔n+1 = 𝐔n + ½Δt(𝐔̇n + 𝐔̇n+1 − 𝐕3) (2e) 

 

where Δt represents the time-step of the analysis, and the auxiliary vectors 𝐕1, 𝐕2 and 𝐕3 are defined based on 

equations (2a), (2b), and (2d), respectively. The auxiliary vector 𝐕3 is computed at the element level, taking into 

account the local properties of the spatially discretized model, which are considered when locally calculating the 

time-integration parameters μ1 and μ2. In this sense, a local vector 𝐕e is computed as 𝐕e = 𝐊e(μ̅1
𝑒𝐔̇𝑒

n+1 + μ̅2
𝑒𝐔̇𝑒

n), 

where the subscripts and superscripts "e" indicate variables defined at the element level (with μ̅𝑖
𝑒 =  μ𝑖

𝑒Δt), and a 

global vector 𝐕 is assembled by combining 𝐕e. 𝐕3 is calculated as 𝐕3 = Δt𝐌−1𝐕, as described by equation (2d). 

This locally defined approach enables the specification of μ1 and μ2 for each element of the discretized model, 

considering its local properties and resulting in a more effective solution procedure. In this case, the following 

expressions are considered to define μ1 and μ2: 
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μ1
e = 4(ξeΩe

max − 1)−1Ωe
max−4

+ 4ξeΩe
max−3

+ 2Ωe
max−2

, (3a) 

μ2
e = −2(ξeΩe

max − 1)−1Ωe
max−4

− 4ξeΩe
max−3

, (3b) 

 

where Ωe
max = ωe

maxΔt and ξe = αm(2ωe
max)−1 + αkωe

max/2 are defined as the maximal sampling frequency and 

damping ratio of element "e", respectively, with ωe
max representing the highest natural frequency of the element. 

Expressions (3a-b) are formulated to ensure that the spectral radius of the method is zero at Ωe
max, thereby 

providing maximum numerical damping at the element's highest sampling frequency. This optimized design aims 

to minimize the impact of spurious high-frequency modes, leading to improved analyses. The introduction of 

numerical damping is intended to eliminate non-physical spurious oscillations caused by unresolved modes. 

However, striking a balance between introducing high-frequency dissipation while preserving low-frequency 

modes is challenging. The new methodology adapts by enforcing low spectral radius values at the highest 

frequencies and relatively high spectral radius values at the important low frequencies. 

As it is well-known, when non-zero values of αk are utilized, physical damping is already incorporated at 

the highest frequencies of the model. Consequently, there is no need to introduce numerical damping into the 

analysis, allowing for the adoption of μ1
e = μ2

e = 0. By eliminating the evaluation of equation (2d), the solution 

algorithm's efficiency is further enhanced. Therefore, in this study, if ξe > 0.222 (refer to [7] for more details 

regarding this threshold), numerical damping is not applied in the analysis and the time integration parameters are 

set to zero (i.e., μ1
e = μ2

e = 0). 

The solution algorithm described by equations (2a-e) is straightforward to implement and does not require 

any user input as all parameters are automatically evaluated based on the properties of the model, as described by 

equations (3a-b). This algorithm describes a self-starting and truly explicit technique that does not involve solving 

any system of equations, only requiring the inversion of the diagonally adopted 𝐌 matrix. By following equations 

(3a-b), the proposed time-marching formulation establishes a connection between the adopted spatial and temporal 

discretization procedures, resulting in improved error balances and in more accurate responses. This technique 

also offers enhanced stability conditions, with a stability limit over 1.7 times greater than that of the Central 

Difference (CD) method. Indeed, the maximum time-step value for each element of the discretized model can be 

determined based on two possible configurations, depending on whether μ1
e = μ2

e = 0 or not, as indicated below: 

 

if  ξe ≤ 0.222, Δte = (2 + 21 2⁄ )(ωe
max)−1, (4a) 

if  ξe > 0.222, Δte = (ξeωe
max)−1, (4b) 

 

Thus, the discussed technique, as shown in equations (4a-b), enables a straightforward estimation of the 

limiting time-step value, which is not typically found in standard truly explicit approaches. This estimation is 

crucial for automated subdomain divisions and adaptive computations of local time-step values, as discussed in 

the next subsection. Additionally, a minimum value of Ωe
max is suggested in equations (3a-b) to prevent excessive 

numerical damping when subdomain/sub-cycling splitting procedures are not considered, with a recommended 

value of 21∕2. 

3  Sub-cycling 

Sub-cycling is a technique proposed by Belytschko et al. [4] that involves dividing a domain into subdomains 

and performing computations at multiple "sub-steps". This approach allows for an explicit time-marching solution 

without restricting the entire domain to its shortest critical time-step value. It enables the consideration of larger 

time-step values for different subdomains, reducing computational efforts. Sub-cycling is necessary when a mesh 

contains both stiff and soft subdomains, which would otherwise require using an excessively small time-step value 

for the entire model. To achieve an efficient computational approach, these regions need to be solved separately, 

employing different time-step values for different subdomains, and then connecting the computed responses. 

However, excessive subdivisions can lead to a compromise in both accuracy and efficiency, emphasizing the 

significance of appropriate sub-cycling considerations. 

This study reports an automated algorithm for subdividing the model domain, aiming to improve efficiency 
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while maintaining accuracy. The algorithm calculates and assigns a time-step (Δt) to each node of the model 

through a controlled subdivision procedure. Elements with similar stability limits are grouped together, creating 

subdomains with different time-step values, enabling an efficient and accurate solution. The following sequence 

of commands is used to define this subdomain division automatically: (i) calculate the limiting time-steps of all 

elements (Δte) using equations (4a-b) and find the smallest Δte of the model (Δte
min, where Δte

min = min(Δte)), 

which serves as the basic time-step for subdivision; (ii) calculate subsequent time-step values as multiples of 2 of 

Δte
min (Δti, where Δti = 2(i−1)Δte

min); (iii) associate each element with a computed time-step value (Δti, where 

Δti ≤ Δte ≤ Δti+1, and i denotes the subdomain of that element); (iv) associate a time-step value (subdomain) to 

each degree of freedom of the model based on the lowest time-step value of the surrounding elements. 

After implementing the subdomain division and sub-cycling algorithm, it is sometimes necessary to 

interpolate the displacement and velocity values near the boundaries of the time-step subdomains. This study 

utilizes the following expressions for these interpolations: 

 

𝐔(t) = ½(𝐔̇n+1 − 𝐔̇n)t2/Δt + 𝐔̇nt + 𝐔n, (5a) 

𝐔̇(t) = (𝐔̇n+1 − 𝐔̇n)t/Δt + 𝐔̇n, (5b) 

 

where t is the current increment of time (0 ≤ t ≤ Δt) for the focused subdomain and ∆t is the time-step value of 

the degree of freedom being interpolated, which is related to another subdomain. A similar expression to equation 

(5b) is used to interpolate 𝐕1, if required, based on equation (2b). 

4  Numerical applications 

This study evaluates the performance of the proposed solution procedure by analyzing two acoustic models. 

The first model represents a homogeneous infinite medium, and its analytical solution is given by the Green's 

function of this acoustic problem. The availability of this analytical solution allows for a precise assessment of the 

errors in the numerically computed responses. The second model simulates a synthetic scenario with complexity 

similar to real-world geological applications, serving as a demonstration of the effectiveness of the proposed 

methodology in analyzing large-scale geophysical problems, such as those encountered in the OIL & GAS 

industry. In particular, this study considers a benchmark case provided by the PETROBRAS research laboratory, 

focusing on the Búzios region, where ten well-defined stratified layers are present [9]. 

The results obtained from the discussed adaptive formulation, both with (New/sub) and without (New) 

considering multi-time-steps/sub-cycling splitting procedures, are compared to those obtained using standard 

explicit approaches. These approaches included the widely used Central Difference (CD) method, the explicit 

generalized α (EG-α) method developed by Hulbert and Chung [10] (where ρb = 0.3665 is chosen, as recommended 

by the authors to minimize errors in period elongation), and the composite Noh-Bathe (NB) method [11] (where p 

= 0.54 is selected, as recommended by the authors). For each technique, the maximum allowable time-step value 

for stability, evaluated at element level, is utilized to enable more efficient analyses for each approach. 

 

  
(a) (b) 

Fig.1 – (a) adopted FEM mesh and (b) computed time-step subdomains. 
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4.1 Application 1 

In this first example, a numerical analysis is conducted on an infinite acoustic model with an impulsive 

source. The model is discretized using a square mesh measuring 5m x 5m, consisting of 310,253 linear 

quadrilateral elements. To simulate the infinite medium, perfectly matched layers (PMLs) [12] are incorporated at 

the boundaries of the model. This setup prevents wave reflection, allowing for longer analyses. The exact solution 

for this application can be found in Mansur [13]. Figure 1a illustrates the mesh used in the analysis, whereas, in 

Fig. 1b, the sub-cycling subdomain decompositions of the analyzed model are presented. This figure demonstrates 

that by employing subdomain decomposition, it becomes possible to use time-step values up to 8 times larger 

compared to standard analyses. 

Table 1 provides the corresponding CPU times and relative errors (computed at a distance of 15 meters from 

the application point of the load) for each approach. The New/sub method utilizes different time-step values, with 

its largest time-step value indicated in the table. As may be observed, the new procedure enables more accurate 

responses to be computed within shorter CPU times, resulting in a significant reduction in computational effort 

compared to standard techniques. In this particular case, the computational effort of the proposed New/sub 

formulation amounts to only 55% of that required by the standard techniques. 

 
Table 1. Computed errors and CPU times for the first application 

Method Δt (10-2s) Error u (10-1) CPU Time (s) 

CD 0.81175 (1.11) 6.66 (3.84) 88.80 (1.79) 

EG-α 0.73160 (1.00) 6.38 (3.67) 114.9 (2.32) 

NB 1.52001 (2.08) 6.59 (3.79) 126.7 (2.56) 

New 0.81175 (1.11) 4.18 (2.40) 89.04 (1.80) 

New/sub 12.9880 (17.8) 1.74 (1.00) 49.49 (1.00) 

 

 
 

Fig.2 – Time history results for U, at a point located 15m horizontally away from the applied load. 
 

In Figure 2, time-history results are presented at a location 15 meters away from the applied source, 

highlighting the improved accuracy achieved with the discussed adaptive approach. As depicted in this figure, the 

adaptive formulation effectively dissipates spurious numerical oscillations, leading to significantly improved 

responses compared to standard techniques. In Figure 3, snapshots of the computed results at t = 20s are shown, 

comparing the outcomes obtained using different time-marching techniques. From this figure, it becomes evident 

that the Central Difference method, Noh-Bathe method, and EG-α method fail to produce accurate results, as their 

computed responses are dominated by spurious oscillations. In contrast, the New and New/sub techniques exhibit 

much more satisfactory results. This demonstrates the capability of the discussed adaptive approach to accurately 

capture the dynamic behavior of the system and mitigate undesirable numerical oscillations. 
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(a) (b) (c) (d) (e) (f) 

Fig.3 – Computed fields at 20s: (a) analytical, (b) CDM, (c) EG-α, (d) Noh-Bathe, (e) New and (f) New/sub. 

4.2 Application 2 

In this second example, a geophysical model of the Búzios region in Brazil is considered. The model 

represents a realistic depiction of a 7.9km x 16km area [9]. The properties of the model are based on fundamental 

rock properties, with subtle variations at the boundaries of the macro-layer, resulting in synthetic data that closely 

resembles real-world scenarios. Figure 4a illustrates the representation of these synthetic data. To analyze the 

model, the original synthetic data obtained from finite difference discretization is converted into a finite element 

mesh comprising 4,864,312 linear triangular elements. The conversion process ensures that the elements of the 

finite element mesh are structured and have uniform sizes, so the variability in the time-step value (Δte) is 

determined by the wave propagation speed of each material within the model. As a result, the model is divided 

into three time-step subdomains, as depicted in Figure 4b. In order to simulate the infinite medium accurately, 

perfectly matched layers (PMLs) with a thickness of 800m are implemented at the left, right, and bottom borders 

of the model. By incorporating PMLs, the model can be analyzed in a manner that is consistent with an infinite 

medium, enabling more accurate and reliable simulations. 

 

  
(a) (b) 

Fig.4 – (a) Geological model and (b) computed time-step subdomains. 

 

  
(a) (b) 

Fig.5 – Computed fields at t = 4s: (a) EG-α; (b) New/sub. 

 

Table 2. Computed CPU times for the second application 

Method Δt (10-3s) CPU Time (s) 

CD 0.64051 (1.11) 5233.7 (1.68) 

EG-α 0.57727 (1.00) 5462.8 (1.75) 

NB 1.19936 (2.08) 5683.6 (1.83) 

New 0.64051 (1.11) 5261.2 (1.69) 

New/sub 2.56204 (4.44) 3112.9 (1.00) 

 

Table 2 presents a comprehensive overview of the performance of the analyzed methods, reaffirming the 

good efficiency of the proposed formulation. The computational effort of the proposed approach is significantly 

reduced compared to standard procedures, with a decrease of up to 40%. Remarkably, this enhanced efficiency 

does not compromise the quality of the obtained results, as demonstrated in Figure 5, where the responses obtained 

using the proposed formulation are shown to be equivalent to those obtained using standard procedures. 
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5  Conclusions 

This study discusses an explicit time-marching technique that incorporates subdomain/sub-cycling splitting 

procedures for solving acoustic models. The time-steps and time-integration parameters of the method are 

determined locally and automatically based on the characteristics of the spatially discretized model. The key 

features of this formulation can be summarized as follows: (i) it is a truly explicit approach that does not involve 

solving any system of equations by utilizing lumped mass matrices; (ii) it is self-starting and relies on simple 

single-step displacement-velocity relations; (iii) it allows for advanced controllable algorithmic dissipation 

through optimized, adaptive, locally computed parameters; (iv) it establishes a connection between the temporal 

and spatial discretization methods, allowing their errors to be better counterbalanced; (v) it provides extended 

stability limits (that may not be reduced by the presence of physical damping, as typically occur in truly explicit 

analyses); (vi) it is fully automated and easy to implement, requiring no user expertise or effort; (vii) it offers high 

accuracy and efficiency, particularly when combined with subdomain/sub-cycling splitting procedures. 

The paper demonstrates that the discussed technique is highly versatile and consistently outperforms 

traditional time-marching methods. It showcases the technique's robustness in adapting to different model 

properties and its ability to handle complex and refined large-scale problems, significantly reducing the 

computational burden of their analyses. As illustrated in this manuscript, the discussed methodology stands as an 

effective and attractive option for modeling complex wave propagation problems. 
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