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Abstract. In this work, we discuss an implicit-explicit time-marching procedure with adaptive time integration 

parameters for the analysis of hyperbolic models. This methodology utilizes two locally evaluated time integration 

parameters, allowing for their different spatial and temporal distributions. The first parameter defines 

implicit/explicit subdomains within the model, ensuring stability and reducing errors related to period elongation. 

The second parameter controls the dissipative properties of the methodology, effectively eliminating the influence 

of spurious high-frequency modes and reducing amplitude decay errors. Moreover, this implicit-explicit approach 

reduces computational effort by obtaining reduced systems of equations and serves as an efficient non-iterative 

single-step procedure. The key features of this novel methodology can be summarized as follows: it is simple, 

locally defined, guarantees stability, provides enhanced accuracy, enables advanced controllable algorithmic 

dissipation in higher modes, establishes a connection between temporal and spatial discretizations, operates as a 

single-solve framework based on reduced systems of equations, is self-starting, and fully automated. The paper 

concludes with the presentation and comparison of numerical results with those obtained using standard 

techniques, illustrating the remarkable effectiveness of the discussed approach. 
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1  Introduction 

Time-dependent hyperbolic equations are widely used in science and engineering, but finding analytical 

solutions for these equations is often impractical. As a result, numerical methods, especially step-by-step time 

integration algorithms, are commonly employed to obtain approximate solutions. The literature presents numerous 

classical explicit and implicit algorithms for time-marching analysis [1-4], each with its own advantages and 

disadvantages. Explicit algorithms are generally preferred due to their lower computational costs, but their use is 

limited by stability conditions. On the other hand, implicit algorithms can be defined as unconditionally stable but 

require higher computational costs. Various techniques can be employed to enhance the accuracy and stability of 

time-integration algorithms, such as subcycling, mass scaling, high-order schemes, and automatic time step 

control. Ongoing research in this field has led to the development of several time-marching techniques available 

today for transient analyses [5-11].  

This work discusses an implicit-explicit time-marching algorithm that combines the strengths of both explicit 

and implicit methods. It employs implicit integrators for "stiffer" subdomains and explicit integrators for "flexible" 

subdomains, making it easier to meet stability requirements and enabling the use of larger time steps. This approach 

also leads to reduced systems of equations, resulting in more efficient analyses. Previous studies on implicit-

explicit time-marching techniques focused on merging different integration procedures, whereas this work presents 

a unified time-marching framework and a model/solution-adaptive implicit-explicit time integration procedure. 

The algorithm dynamically selects time integration parameters at a local level, allowing different values to be used 

for each element of the model and each time step. It is adaptive and computes integration parameters automatically 

based on the properties of the discrete model and the evolution of the computed fields. Consequently, this approach 

offers a high degree of flexibility and effectiveness. 

The methodology utilized in this work involves two time integration parameters, γ and α, which are employed 

to determine the explicit/implicit and dissipative/non-dissipative aspects of the model, respectively [5]. The 
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calculation of γ ensures stability and improved accuracy, while α is evaluated to eliminate the influence of spurious 

modes. The approach is non-iterative, directly computing the values of the time integration parameters based on 

local properties of the spatial discretization, the chosen time step, and the results from previous time steps. It is 

also self-starting, eliminating the need for complex initial procedures. 

In the field of geophysics, the analysis of heterogeneous domains with multiple layers consisting of different 

materials is common. Therefore, the methodology discussed in this work automatically handles the more "flexible" 

layers of the geological model explicitly, while treating the other layers implicitly. This approach enables the 

consideration of larger time steps, leading to improved efficiency. Additionally, the methodology evaluates an 

optimal time-step value that ensures the most efficient distribution of explicit and implicit elements throughout the 

model. This guarantees that the implicit-explicit approach described in this work is always more efficient compared 

to conducting the analysis entirely using either explicit or implicit methods. 

2  Governing equations and time integration strategy  

 The governing equation describing a semi-discrete hyperbolic system may be written as: 

𝐌𝐔̈(t) + 𝐂𝐔̇(t) + 𝐊𝐔(t) = 𝐅(t), (1) 

where 𝐌, 𝐂, and 𝐊 represent its mass, damping, and stiffness matrices, respectively. The system's acceleration, 

velocity, and displacement vectors are denoted as 𝐔̈(t), 𝐔̇(t) and 𝐔(t), respectively, and the external force acting 

on the system is represented by vector 𝐅(t). Furthermore, the initial conditions are defined as 𝐔0 = 𝐔(0) and 

𝐔̇0 = 𝐔̇(0), representing its initial displacement and velocity vectors, respectively. 

The adopted time-domain solution methodology utilizes locally and adaptively computed time integration 

parameters, which take into account the properties of the discretized model and its computed responses. This 

approach enhances the accuracy of the discussed solution procedure, which is here carried out considering the 

following recurrence equations: 
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where Δt represents the time-step used in the analysis. An important feature of this method is that it solely relies 

on the first temporal derivative of 𝐔 and does not necessitate the calculation of its second temporal derivative. This 

characteristic renders it a truly self-starting method, eliminating the need for complex initial procedures such as 

computing initial second temporal derivatives or using multistep initial values. Another important characteristic is 

that, in the discussed adaptive approach, the time integration parameters are computed spatially and temporally to 

more effectively explore specific features. This is achieved by defining 𝛼𝑒
𝑛 and 𝛾𝑒

𝑛, where "𝑒" represents the 

element of the spatial discretization used in the analysis. 

In this approach, the parameter γe
n plays a crucial role in defining explicit and implicit subdomains. When 

γe
n =  0, explicit elements are generated, resulting in a local system of equations that has a diagonal effective 

matrix when lumped mass and damping matrices are employed. On the other hand, implicit elements are obtained 

when γe
n ≠  0. For improved accuracy in the implicit elements, it is recommended to use 0 <  γe

n < 1/2. Notably, 

when αe
n =  1 and γe

n =  0, the proposed technique reproduces the characteristics of the central difference (CD) 

method, while αe
n = 1/2 and γe

n = 1/2 replicate the trapezoidal rule (TR). Therefore, by selecting 0 <  γe
n < 1/2 

and αe
n =  1 – γe

n (representing a non-dissipative formulation), an intermediate methodology between the CD and 

the TR is achieved. This intermediate methodology reduces period elongation errors compared to the CD and the 

TR, as the CD provides negative period elongation and the TR provides positive period elongation. The value of 

γe
n is determined using equations (3a) and (3b), which depend on the maximum sampling frequency of the element: 

Ωe
max =  ωe

maxΔt, where ωe
max represents the highest natural frequency of the element. 

𝐼𝑓 𝛺𝑒
𝑚𝑎𝑥 ≤ 2, 𝛾𝑒

𝑛 = 0 (3a) 

If Ωe
max > 2, γe

n =
1

2
tanh (

1

4
Ωe

max) (3b) 

The proposed implicit solution is always stable, while the explicit analysis is conditionally stable with a 

critical value of Ωc = 2, the same as that of the central difference method. By using this criterion to compute γe
n, 
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the implicit-explicit algorithm is ensured to maintain stability. When the element properties remain constant 

throughout the analysis, such as in standard linear analyses, the values of γe
n remain unchanged over time. 

Consequently, if the model matrices remain unchanged, the time integration parameter γe
n also remains constant, 

resulting in a constant effective matrix (see the left-hand-side of equation (2a)) throughout the analysis. In this 

scenario, the effective matrix can be calculated and treated only once, leading to increased efficiency.  

Additionally, the inclusion of explicit elements into the analysis results in a portion of the effective matrix 

consisting solely of diagonal entries. These entries can be easily eliminated from the global system of equations, 

reducing the system dimension and the computational effort required for its solution. Thus, the proposed hybrid 

implicit-explicit analysis offers a stable algorithm with a smaller system of equations, making it more efficient 

compared to traditional implicit methods. It is important to emphasize that this automatic reduction of the global 

system dimension is achieved solely by considering the diagonal terms of the effective matrix, without any 

predetermined subdomain specifications or user input, which may not be practical for complex models. 

The αe
n parameter governs the dissipative characteristics and can be adjusted based on the solution evolution. 

It allows for the introduction of numerical dissipation when and where it is needed to mitigate spurious non-

physical oscillations. By locally computing αe
n, the technique aims to optimize the incorporation of numerical 

damping into the analysis, minimizing its adverse effects. Thus, when αe
n =  1 – γe

n, no numerical dissipation is 

introduced into the analysis. However, when αe
n is greater than 1 – γe

n, numerical damping is present. This 

capability allows for the selective activation of dissipation at specific locations or instants where oscillations occur, 

while deactivating it when unnecessary. This approach avoids the imposition of a permanent algorithmic 

dissipative pattern and helps prevent excessive numerical damping errors. The activation of dissipation can be 

based on an oscillatory criterion, where the αe
n parameters of neighboring elements to an oscillating degree of 

freedom are adjusted to introduce numerical dissipation. If no oscillatory behavior is detected, αe
n =  1 – γe

n is 

used. This process involves computing an oscillatory parameter φe
n for each element and time step of the analysis. 

If φe
n =  0 (indicating no oscillation), αe

n =  1 – γe
n; otherwise, αe

n >  1 – γe
n, as shown: 

φe
n = ∑ ||ui

n − ui
n−2| − |ui

n − ui
n−1| − |ui

n−1 − ui
n−2|| /|ui

n − ui
n−2|

ηe

i=1

 (4a) 
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n (4b) 
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2
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2
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where ξe = ςe/(2ρeωe
max) and ρe and ςe represent the physical properties of the medium that define matrices 𝐌 

and 𝐂, respectively. Equation (4c) is formulated so that maximum numerical dissipation is applied to the higher 

frequency of the element [5], making this procedure highly effective in dissipating the influences of spurious high-

frequency modes.  

In the discussed implicit-explicit analysis, increasing the chosen time-step value reduces the number of 

required time steps for the solution within a fixed period of analysis, which is beneficial for efficiency. However, 

simultaneously, enlarging Δt results in a higher number of implicit elements throughout the discretized model, 

increasing the computational effort required for the solver procedure. Consequently, an optimization algorithm 

can be employed to determine an optimal Δt value with respect to computational efficiency. In this study, the 

Particle Swarm Optimization (PSO) algorithm [12] is utilized to compute the optimal Δt by minimizing the 

expected total number of operations involved in the solution process. 

3  Numerical applications 

In this section, we present two numerical examples to showcase the effectiveness of the discussed hybrid 

technique. The first example involves a heterogeneous rod consisting of two materials, for which analytical 

solutions are available. This allows us to assess the accuracy of the proposed technique. The second example 

involves a synthetic model that closely resembles real geological applications, demonstrating the efficacy of the 

methodology for analyzing large-scale geophysical problems encountered in the OIL & GAS industry. 

Specifically, the study focuses on the elastic 2DEW model, which encompasses multiple layers with varying 

properties and significant salt regions, representing complex configurations of elastodynamic wave propagation. 

The performance of the discussed implicit-explicit adaptive formulation, referred to as the "New" method, 
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is compared to that of standard explicit methods. The explicit methods used for comparison include the classic 

Central Difference (CD) method, the explicit generalized α (EG-α) method developed by Hulbert and Chung [2], 

and the Noh-Bathe (NB) method [4]. The EG-α method adopts a value of ρb = 0.3665 to minimize period 

elongation errors, as recommended by the authors, while the NB method uses a value of p = 0.54, also 

recommended by the authors. Each explicit method applies the maximum allowable time-step value for stability, 

evaluated at element level, to ensure more efficient analyses for each approach. In contrast, the implicit-explicit 

approach evaluates an optimal time-step value for each analysis, as discussed at the end of the previous section. 

3.1 Application 1 

In this first example, we examine a rectangular heterogeneous rod composed of different combinations of 

two materials. Two model configurations were analyzed, with each material occupying 50% of the rod proportion. 

For both analyses, material 1 has the physical properties E = 100 KPa and ρ =  1Kg/m3, with material 2 having 

the same density. The modulus of elasticity of material 2 is chosen to generate different wave propagation speeds 

(c2/c1) between the two materials, with the first analysis having a ratio of 4 and the second analysis having a ratio 

of 6. The model is spatially discretized using a structured finite element mesh consisting of 32,000 linear square 

elements. The analytical solution for the horizontal displacements of the rod is known in the literature and can be 

found in [13], allowing for proper evaluation of the accuracy of the referred solution techniques. 

 

Table 1 presents the CPU times and relative errors (computed at point A, located at the center of the model, 

as shown in Figure 1) for each approach. The “New” method employs the same time step for both implicit and 

explicit subdomains, with the more rigid region treated implicitly and the less rigid region treated explicitly. This 

allows for the use of a larger time step for the overall analysis. As observed, the new procedure achieves similar 

or greater accuracy compared to the standard methods but with shorter CPU times, resulting in a significant 

reduction in computational effort. In these specific cases, the computational effort of the discussed “New” 

formulation amounts to only 89% (c2 c1⁄ = 4) and 55% (c2 c1⁄ = 6) of that required by the standard techniques. 

 
Table 1 - Performance of the methods for the first example 

c2 c1⁄  Method Δt (10-4s) Error u (10-2) CPU Time (s) 

4 CD 0.61874 (1.11) 1.02 (1.00) 86.1 (1.12) 

EG-α 0.55765 (1.00) 1.10 (1.08) 90.7 (1.18) 

NB 1.15861 (2.08) 1.08 (1.06) 103.2 (1.35) 

New 2.49920 (4.48) 1.15 (1.12) 76.7 (1.00) 

6 CD 0.41249 (1.11) 1.50 (1.00) 139.8 (1.81) 

EG-α 0.37177 (1.00) 1.55 (1.03) 147.4 (2.18) 

NB 0.77241 (2.08) 1.55 (1.03) 167.7 (2.18) 

New 2.49920 (6.72) 1.51 (1.00) 77.0 (1.00) 

 

In Figure 2, time-history results are presented at the same point A for both analyses, highlighting the 

improved accuracy achieved with the proposed adaptive approach. It is evident that the “New” method obtains 

results similar to the other techniques, even when using time steps 6 times larger. 

 

 
Fig.1 – Sketch of the heterogeneous rod. 
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(a) 

 
(b) 

 

Fig.2 – Time history results for ux, at the middle of the rod, considering: (a) c2 c1⁄ = 4; and (b) c2 c1⁄ = 6. 

 

  
(a) (b) 

Fig.3 – (a) Geological model and (b) division of implicit (orange) and explicit (white) subdomains. 

3.2 Application 2 

In the second example, a geophysical model generated in SEAM (SEG Advanced Modeling) is considered. 

This model simulates a realistic soil environment in a salt region in the Gulf of Mexico, incorporating stratigraphy 

and including oil and gas reservoirs. All properties of the model are derived from fundamental rock properties, 

which exhibit subtle contrasts at the boundaries of the macro-layer. This generates realistic synthetic data for 

analysis. The model distribution used is the Elastic Earth Model, specifically the Elastic 2DEW Classic model 

[14], is represented in Figure 3a. The distribution consists of three binary files containing data for density, P-wave 
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velocity (dilation), and S-wave velocity (shear). In this case, for the discussed implicit-explicit approach, an 

optimal time-step of 0.42489s is computed, resulting in 16.78% implicit elements and 83.22% explicit elements 

along the referred mesh, as illustrated in Figure 3b. 

 
Table 2 - Performance of the methods for the geological model 

Method Δt (10-3s) CPU Time (s) 

CD 0.32415 (1.11) 11322.8 (2.15) 

EG-α 0.29215 (1.00) 12283.3 (2.34) 

NB 0.60698 (2.08) 14773.1 (2.81) 

New 0.42489 (1.45) 5259.40 (1.00) 

 

Similar to Table 1, Table 2 showcases the performance of the selected techniques for the second example, 

further emphasizing the superior efficiency of the discussed hybrid approach. Figures 4(a) and 4(b) present 

snapshots of the displacements computed using the studied implicit-explicit formulation and explicit generalized 

α method, respectively. These figures demonstrate that both techniques yield very similar results, with the 

discussed hybrid approach offering more efficient evaluations, as indicated in Table 2. 

 

  
(a1) (b1) 

  
(a2) (b2) 

  
(a3) (b3) 

Fig.4 – Computed results along the discretized domain at different time instants: 

(a) New, (b) EG-α; (1) 2s, (2) 4s, and (3) 8s. 

4  Conclusions 

This work presents an adaptive implicit-explicit time-marching technique for analyzing elastodynamic 

problems. The discussed formulation exhibits several noteworthy characteristics, such as: (i) it is a straightforward 

hybrid approach, directly combining explicit and implicit formulations; (ii) it is locally and adaptively defined, 

allowing for better accuracy; (iii) it ensures stability; (iv) it is an efficient non-iterative single-step procedure; (v) 

it incorporates controllable algorithmic dissipation; (vi) it establishes a connection between the temporal and 

spatial discretization approaches; (vii) it provides reduced solver efforts; (viii) it is self-starting, eliminating the 

need for complex initialization procedures; (ix) it is fully automated and user-friendly, requiring minimal input 

and expertise; (x) it surpasses standard explicit or implicit formulations in efficiency by employing optimized 

time-step values. As one may observe, the discussed technique stands as a very effective time-marching 

formulation. 
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