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Abstract. Thin-walled frame structures consisted of profiles or rod members are often subject to loadings that 
induce local effects on the profiles´ webs and flanges. For some elements, local instability is the main design 
constraint. This work aims to present the first steps towards a thin-walled kinematically-exact rod formulation with 
cross-sectional local effects on its kinematical assumptions. The model´s displacement field allows for the 
traditional cross-sectional rigid body motion, along with wall´s mid-line in- and out-of-plane deformations (first-
order in-plane distortion and out-of-plane warping, respectively, herein called primary deformations) and a 
kinematically-exact rotation for out-of-mid-line points (herein called secondary deformation). Accordingly, rigid 
body motion is parametrized as usual for geometrically exact models, whilst primary deformations are described 
by means of the Generalized Beam Theory (GBT) concept. The (shell-like) rotation that defines the secondary 
deformation, in turn, is obtained as a function of the walls´ mid-line displacement field and is parametrized using 
Kirchhoff-Love shell assumptions. This is an ongoing research, and only the kinematical description, the related 
weak form (for future FEM discretization) are presented. Its linearization is only conceptually briefed by now. 
Neither constitutive equations nor numerical implementation are addressed here. 

Keywords: thin-walled rods, cross-sectional local effects, distortion, warping, finite element method (FEM). 

1  Introduction 

Usual rod models take into consideration only cross-sectional rigid body displacements, allowing at most an 
additional warping deformation, for both low-order and kinematically-exact frameworks. Thin-walled rod 
structures, however, are naturally prone to local deformation effects, which require additional enrichment of the 
kinematical description. In this context, the Generalized Beam Theory (GBT) was introduced by Schardt [1] in the 
context of geometric linear theories, describing the body transformation as a linear combination of deformation 
modes (also called GBT modes) for the thin-wall mid-lines (primary distortion). The GBT approach divides the 
structural analysis into two steps: 1) a cross-section analysis (to determine the GBT modes); and 2) an element or 
member analysis (to solve, usually by FEM, for the mode amplitudes). In this approach, the displacements of 
points located out of the wall´s midlines are obtained by imposition of usual plane-stress assumptions for plates 
(secondary distortion). 

The aforementioned process was devised for application in a linear elastic static context, being later expanded 
to embed dynamics and second-order buckling analysis. More recently, some developments have been made to 
incorporate the GBT modes into robust kinematically-exact rod models, as in Gonçalves et al. [2] or in Li and Ma 
[3]. Therein, first insights on how to incorporate local web/plate distortion into such models were provided. Despite 
achieving satisfactory results, some theoretical limitations were yet to be treated: firstly, the secondary distortion 
was parametrized in a linearized fashion. Secondly, either the constitutive equation or the strain measures were 
truncated, leading to a lower order constitutive equation. 

This work seeks to contribute to overcome those limitations. The proposed approach is to, given a set of 
distortional modes for the primary distortion (obtained through the GBT concept), parametrize the secondary 
deformation using expressions for the rotation from the kinematically-exact Kirchhoff-Love shell theory. We also 
intend to allow for the use of more consistent (non-truncated) material laws. For the current formulation, the 
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following notation is used: lowercase Latin or Greek letters (𝑎, 𝑏, … , 𝛼, 𝛽, … . ) denote scalar quantities, bold 
lowercase Latin or Greek letters (𝒂, 𝒃, … , 𝜶, 𝜷, … . ) denote vectors, Bold capital Latin or Greek letters (𝑨, 𝑩, … ) 
denote second-order tensors. Implicit summation convention is used throughout.  

When indices are Greek letters, they range from 1 to 2, and when they are Latin letters, from 1 to 3. Scalar, 
cross and dyadic products are represented by “∙”, “×” and “⊗”, respectively. The comma in (∘),௚ indicates partial 
derivative w.r.t. 𝑔. 

2  The proposed rod model 

The proposed rod model is intended to be suitable for prismatic rods (i.e., with constant cross-section) and 
straight initial configuration. The cross-sections are considered to be composed of thin-walled rectangular walls, 
and arbitrary (closed, open, branched, different thickness for each wall, etc.) geometries.  

2.1 Kinematical description  

The kinematical description is divided into two parts: the primary deformation (for walls´ mid-line points) 
and the secondary deformation (for the remaining, out-of-mid-line points). The primary deformation is function 
of a) the six usual rigid body degrees of freedom (three for the axial displacements 𝒖 and three for the cross-
sectional rotations 𝜽, the latter being calculated by the Euler-Rodrigues formula as in Yojo, Pimenta and Campello 
[4]–[6]) and b) a set of 𝑛௩ in-plane (𝜙௜) and 𝑛௪ out-of plane (𝜓௝) arbitrary deformation modes. Those deformation 
modes can be interpreted as a basis and, in the current work, a detailed discussion about how to generate them is 
out of the scope – it suffices to say that they will be derived through the GBT cross-sectional analysis, analogously 
as in [7], [8]. It is important to define now two reference systems: one for the cross-section {𝒆ଵ

௥ , 𝒆ଶ
௥ , 𝒆ଷ

௥}, with 𝑒ଷ
௥ 

aligned with the reference rod axis and one for each individual wall {𝒆ଵೞ
௥ , 𝒆ଶೞ

௥ , 𝒆ଷೞ
௥ }, with 𝒆ଵೞ

௥  aligned with 𝒆ଷ
௥ , 𝒆ଶೞ

௥  
aligned with the wall mid-line and 𝒆ଷೞ

௥  orthogonal to the two latter (see fig. 1b). 

a) 
 

b) 

Figure 1 – Cross-section a) deformation b) wall geometry c) detail of mid-line deformation 

As can be seen in Fig. 1a), points in the reference configuration are given by 

 𝝃 = 𝜻 + 𝒂௥, (1) 

 𝒂௥ = 𝒂௠௥ + 𝒉௥ , (2) 

where 𝜻 = 𝜁𝒆ଷ
௥ (with 𝜁 ∈ 𝛺௥ = [0, 𝐿]) is the axis reference position and 𝒂௥ is the position of an arbitrary point of 

the cross-section, that can be decomposed in two parts: a projection in the mid-line of the wall that it belongs to 
(𝒂௠௥) and a position (or wall director) 𝒉௥  relative to this latter that is parallel to the wall thickness. 

Points in the current configuration are given by  
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 𝒙 = 𝒙௠ + 𝒙௛ = 𝒛 + 𝒚௠ + 𝒉, (3) 

where 𝒙௠ = 𝒛 + 𝒚௠ is the current position of the wall´s mid-line points (with 𝒛 as the current position of the axis), 
𝒚௠ = 𝒂௠ + 𝒗௠ + 𝒘௠ is the current position of the mid-line points w.r.t. the axis (i.e., the primary deformation) 
and 𝒙௛ = 𝒉 is the final position (or director) of the other points w.r.t the mid-line (i.e. the secondary deformation). 
Let us detail each of the components of the displacement field: the axis current position is determined by the axial 
displacement 𝒖 through 

 𝒛 = 𝜻 + 𝒖. (4) 

The wall midline rotation w.r.t. the axis is  

 𝒂௠ = 𝑸𝒂௠௥, (5) 

where 𝑸 is the rotation tensor of the cross-section. Note that 𝒆ଷ = 𝑸𝒆ଷ
௥  is not tangent to the rod axis, in general. 

The cross-sectional in- and out-of plane distortions of the mid-line (the out-of-plane standing for the warping) 
are, respectively 

 𝒗௠ = ൫𝝓ఉ ∙ 𝒓൯𝒆ఉ and 𝒘௠ = (𝝍 ∙ 𝒑)𝒆ଷ, (6) 

where 𝝓ఉ and 𝝍 are vectors that collect the in- and out-of-plane distortion modes of the mid-line and 𝒓 and 𝒑 are 
the intensities of the associated modes. Lastly, once the primary deformation is established, the secondary 
deformation can be obtained as a function of the primary distortion, by means of the Kirchhoff-Love shell 
assumption. Thus, it is merely a rotation, characterized by a tensor 𝑸௛, of the director 𝒉௥ , such that  

 𝒉 = 𝑸௛𝒉௥ . (7) 

This implies that the wall director remains perpendicular to the wall´s mid-line after the deformation. 
It is possible to express the deformation gradient by its column-vectors and separate all the terms that contain 

𝒉௥  from the rest. The terms that do not contain it are grouped and named here mid-line terms (𝒇௜
௠) (some GBT-

related authors call them membrane terms), and the ones that contain it are grouped and named thickness terms 
(𝒇௜

௛). Putting the cross-sectional rotation tensor in evidence, it is possible to write 

 𝑭 = 𝒙,௜ ⊗ 𝒆௜
௥ = 𝑸𝑭𝒓 = 𝑸൫𝒇௜

௠௥
+ 𝒇௜

௛௥
൯ ⊗ 𝒆௜

௥, (8) 

where (∘)௥ are defined as back-rotated quantities. Using eq. (3)-(8), one gets  

 𝒇ఈ
௠௥ = 𝑙ఈ

ଶ𝒆ఈ
௥ + ൫𝝓ఉ,ఈ ⋅ 𝒓൯𝒆ఉ

௥ + ൫𝝍,ఈ ⋅ 𝒑൯𝒆ଷ
௥ , (9) 

 𝒇ଷ
௠௥

= 𝜼௥ + 𝒆𝟑
𝒓 + 𝜿௥ × 𝒚௠௥ + ൫𝝓ఉ ⋅ 𝒓′൯𝒆ఉ

௥ + (𝝍 ⋅ 𝒑′)𝒆ଷ
௥ , (10) 

 𝒇ఈ
௛ ௥

= ൫ℎ௥𝑸்𝑸,ఈ
௛ − 𝜖ఈఉ𝑙ఉ𝑸௛௥

൯൫−𝜖ఊఉ𝑙ఉ൯𝒆ఊ
௥ , (11) 

 𝒇ଷ
௛௥

= 𝑸்𝑸௛ᇱ
𝒉௥ , (12) 

where 𝜼௥ = 𝑸்𝜼 = 𝑸்(𝒖ᇱ + 𝒆ଷ
௥ − 𝒆ଷ), 𝜿௥ = 𝑸்𝜿 (with 𝜿 = 𝑎𝑥𝑖𝑎𝑙(𝑸′𝑸்) as defined in Campello and Pimenta 

[9]), 𝒚௠௥ = 𝑸்𝒚௠, ℎ௥ = ‖𝒉௥‖, 𝑙ଵ = cos(𝛼௜), 𝑙ଶ = sin(𝛼௜) (𝛼௜ is the inclination of the wall to which the analysed 
point belongs (w.r.t. direction 𝒆ଵ

௥  of the reference system, see Fig. 1b), and 𝜖ఈఉ = ൫𝒆ఈ
௥ × 𝒆ఉ

௥ ൯ ⋅ 𝒆ଷ
௥ . 

It is now convenient to define the explicit expression for the director´s Kirchhoff-Love shell rotation 𝑸௛. 
From Pimenta, Neto and Campello [10], expressing in terms of the cross-section local system instead of a shell 
local system, one gets 

 𝑸௛ = 𝑸 ቊฮ𝜖ఈఉ𝑙ఈ𝒈ఉ
௠௥

ฮ
ିଵ

ቆ
ఢഀഁ௟ഀ

మ

ቛ𝒇య
೘ೝ

ቛ
𝒈ఉ

௠௥
× 𝒇ଷ

௠௥
− 𝜖ఈఉ𝑙ఈ𝑙ఉ𝒈ఉ

௠௥
ቇ ⊗ 𝒆ఈ

௥ + ฮ𝒇ଷ
௠௥

ฮ
ିଵ

𝒇ଷ
௠௥

⊗ 𝒆ଷ
௥ቋ. (13) 

Note that 𝑸௛ can be re-written as 𝑸௛ = 𝑸𝑸௛௥
, where 𝑸௛௥

 is defined as the back-rotated shell rotation. 
Now, some useful derivatives are shown below: 

 𝑸,ଵೞ
௛ = 𝑲ଵ௦𝑸௛ and ൫𝑸௛௥

൯
,ଵೞ

 = 𝑸்൫𝑸௛ᇱ
− 𝑲𝑸௛൯, (14) 

 𝑸,ଶೞ
௛ = 𝑲ଶೞ

𝑸௛ and ൫𝑸௛௥
൯

,ଶೞ
 = 𝑸்𝑲ଶೞ

𝑸௛௥
, (15) 

 ൫𝑸௛௥
൯

,ଷೞ
 = 𝟎, (16) 
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and  

 𝑸,ఈ
௛ = 𝑙ఈ𝑲ଶೞ

𝑸௛. (17) 

with the shell curvature vectors being defined as 

 𝜿ఈೞ
= 𝑎𝑥𝑖𝑎𝑙൫𝑲ఈೞ

൯ = 𝜞ఉೞ
𝒖,ఉೞఈೞ

௠ , (18) 

where 𝜞ఉೞ
 is defined analogously as in [10] and  

 𝒖௠ = 𝒙௠ − (𝜻 + 𝒂௠௥  ). (19) 

Using eqs. (14)-(18), it is possible to rewrite eq. (11) and (12) as 

 𝒇ఈ
௛ ௥

= ൫𝑙ఈℎ௥𝑸்𝑲ଶೞ
𝑸 − 𝜖ఈఉ𝑙ఉ𝑰൯൫−𝜖ఊఉ𝑙ఉ൯𝑸௛௥

𝒆ఊ
௥ , (20) 

 𝒇ଷ
௛௥

= 𝑸்𝑲ଵೞ
𝑸𝑸௛௥

𝒉௥ , (21) 

Now, the second-order derivatives 𝒖,ఉೞఈೞ

௠  are needed. Performing the algebra, one gets 

 𝒖,ଵೞ
௠ = 𝑸𝒇ଷ

௠௥
+ 𝒆ଷ

௥  and 𝒖,ଶೞ
௠ = 𝑸𝑙ఈ𝒇ఈ

௠௥, (22) 

 𝒖,ଵೞଵೞ
௠ = 𝑲𝑸𝒇ଷ

௠௥
+ 𝑸𝒇ଷ

௠௥ᇱ
, (23) 

 𝒖,ଵೞଶೞ
௠ = 𝑸𝑙ఈ𝒇ଷ,ఈ

௠ ௥
= 𝒖,ଶೞଵೞ

௠ = 𝑲𝑸𝑙ఈ𝒇ఈ
௠௥ + 𝑸𝑙ఈ𝒇ఈ

௠௥ᇱ
, (24) 

 𝒖,ଶೞଶೞ
௠ = 𝑸𝑙ఈ𝑙ఉ𝒇ఈ,ఉ

௠ ௥ , (25) 

where the following additional auxiliary results appear: 

 𝒇ఈ,ఊ
௠ = ൫𝝓ఉ,ఈఊ ⋅ 𝒓൯𝒆ఉ

௥ + ൫𝝍,ఈఊ ⋅ 𝒑൯𝒆ଷ
௥ , (26) 

 𝒇ఈ
௠ᇱ = ൫𝝓ఉ,ఈ ⋅ 𝒓ᇱ൯𝒆ఉ

௥ + ൫𝝍,ఈ ⋅ 𝒑′൯𝒆ଷ
௥ , (27) 

 𝒇ଷ,ఊ
௠ = 𝜿௥ × ൣ൫𝝓ఉ,ఈ ⋅ 𝒓൯𝒆ఉ

௥ + ൫𝝍,ఈఊ ⋅ 𝒑൯𝒆ଷ
௥൧ + ൫𝝓ఉ,ఈ ⋅ 𝒓ᇱ൯𝒆ఉ

௥ + ൫𝝍,ఈ ⋅ 𝒑′൯𝒆ଷ
௥  (28) 

 𝒇ଷ
௠ᇱ

= 𝜼௥ − 𝒚௠௥ × 𝜿௥ + 𝜿௥ × ൣ൫𝝓ఉ ⋅ 𝒓ᇱ൯𝒆ఉ
௥ + (𝝍 ⋅ 𝒑ᇱ)𝒆ଷ

௥൧ + ൫𝝓ఉ ⋅ 𝒓ᇱᇱ൯𝒆ఉ
௥ + (𝝍 ⋅ 𝒑′′)𝒆ଷ

௥  (29) 

The displacement field 𝒙 and the deformation gradient 𝑭 are now fully characterized. 

2.2 Equilibrium: virtual work 

The Virtual Work Theorem is applied to the rod. As in previous works, (for example Yojo and Pimenta [4] 
or Campello and Pimenta [5]), the internal virtual work can be expressed as function of the back-rotated first Piola-
Kirchhoff stress tensor 𝑷௥ = 𝑸்𝑷 = 𝝉௜

௥ ⊗ 𝒆௜
௥ and the back-rotated deformation gradient 𝑭௥ = 𝑸்𝑭. Accordingly, 

one gets 

 𝛿𝑊 = 𝛿𝑊௜௡௧ − 𝛿𝑊௘௫௧ = 0, (30) 

with 

 𝛿𝑊௜௡௧ = ∫ ∫ 𝑷: 𝛿𝑭𝑑𝐴௥𝑑𝛺௥
஺ೝఆೝ = ∫ ∫ 𝑷௥: 𝛿𝑭௥𝑑𝐴௥𝑑𝛺௥

஺ೝఆೝ = ∫ ∫ 𝝉௜
௥ ⋅ 𝛿𝒇௜

௥𝑑𝐴௥𝑑𝛺௥
஺ೝఆೝ = 

 = ∫ ∫ ൫𝝉௜
௥ ⋅ 𝛿𝒇௜

௠௥
+ 𝝉௜

௥ ⋅ 𝛿𝒇௜
௛௥

൯𝑑𝐴௥𝑑𝛺௥
஺ೝఆೝ =  𝛿𝑊௜௡௧

௠ + 𝛿𝑊௜௡௧
௛  (31) 

 𝛿𝑊௘௫௧ = ∫ ∫ 𝒃ഥ ⋅ 𝛿𝒙𝑑𝐴௥𝑑𝛺௥
஺ೝఆೝ + ∫ ∫ 𝒕̅ ⋅ 𝛿𝒙𝑑𝐴௥𝑑𝐶௥

஺ೝ஼ೝ = 𝛿𝑊௘௫௧
௕ + 𝛿𝑊௘௫௧

௧ , (32) 

where 𝛿𝑊௜௡௧
௠  are the mid-line terms of the internal virtual work and 𝛿𝑊௜௡௧

௛  are the thickness terms. Note that the 
external virtual work has terms from both surface and body external loadings (𝛿𝑊௘௫௧

௕  and 𝛿𝑊௘௫௧
௧ ). Expanding the 

area integrals from eq. (31) one gets, for the mid-line internal work,  

 ∫ ൫𝝉௜
௥ ⋅ 𝛿𝒇௜

௠௥
൯𝑑𝐴௥

஺ೝ = 𝝈ଵ
௠௥

⋅ 𝛿𝜺ଵ
௥, (33)with 

 𝝈ଵ
௠௥

= [𝒏௠௥ 𝒎௠௥ 𝝆௠ 𝝅௠ 𝜷௠ 𝜶௠]், (34) 

 𝛿𝜺ଵ
௥ = [𝛿𝜼௥ 𝛿𝜿௥ 𝛿𝒓 𝛿𝒑 𝛿𝒓ᇱ 𝛿𝒑ᇱ]், (35) 
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 𝒏௠௥ = ∫ (𝝉ଷ
௥)𝑑𝐴௥

஺ೝ , (36) 

 𝒎௠௥ = ∫ (𝒚௠௥ × 𝝉ଷ
௥)𝑑𝐴௥

஺ೝ  , (37) 

 𝝆௠ = ∫ ൫ൣ𝝓ఉ ⊗ ൫𝜿௥ × 𝒆ఉ
௥ ൯൧𝝉ଷ

௥ + ൫𝝓ఉ,ఈ ⊗ 𝒆ఉ
௥ ൯𝝉ఈ

௥ ൯𝑑𝐴௥
஺ೝ , (38) 

 𝝅௠ = ∫ ൫[𝝍 ⊗ (𝜿௥ × 𝒆ଷ
௥)]𝝉ଷ

௥ + ൫𝝍,ఈ ⊗ 𝒆ଷ
௥൯𝝉ఈ

௥ ൯𝑑𝐴௥
஺ೝ , (39) 

 𝜷௠ = ∫ ቀ൫𝝓ఉ ⊗ 𝒆ఉ
௥ ൯𝝉ଷ

௥ቁ 𝑑𝐴௥
஺ೝ , (40) 

 𝜶௠ = ∫ ൫(𝝍 ⊗ 𝒆ଷ
௥)𝝉ଷ

௥൯𝑑𝐴௥
஺ೝ , (41) 

and for the thickness internal work 

 ∫ ൫𝝉௜
௥ ⋅ 𝛿𝒇௜

௛௥
൯𝑑𝐴௥

஺ೝ = 𝝈ଵ
௛௥

⋅ 𝛿𝜺ଵ
௥ + 𝝈ଶ

௛௥
⋅ 𝛿𝜺ଶ

௥  (42) 

with 

 𝝈ଵ
௛௥

= ൣ𝒏௛௥
𝒎௛௥

𝝆௛ 𝝅௛ 𝜷௛ 𝜶௛൧
்
, (43) 

 𝝈ଶ
௛௥

= ൣ𝒏ఏ
௛௥

𝒑௛௥
𝒒௛௥

𝜹௛ 𝝌௛൧
்
, (44) 

 𝛿𝜺ଶ
௥ = [𝛿𝜽 𝛿𝜼௥ᇱ 𝛿𝜿௥ᇱ 𝛿𝒓ᇱᇱ 𝛿𝒑ᇱᇱ]், (45) 

 𝒏௛௥
= ∫ ൫𝒕ఈ௙య

+ 𝒕ଷ௙య
൯𝑑𝐴௥

஺ೝ , (46) 

 𝒎௛௥
= ∫ ቀ𝒕ଷ఑ + 𝒚௠௥ × ൫𝒕ఈ௙య

+ 𝒕ଷ௙య
൯ + 𝒚,ఈ

௠௥ × 𝒕ఈ௙య,ം
+ 𝒚௠௥ᇱ

× 𝒕ଷ௙య
ᇲቁ 𝑑𝐴௥

஺ೝ , (47) 

 𝝆௛ = ∫ ൬൫𝝓ఊ,ఉ ⊗ 𝒆ఊ
௥ ൯(𝒕ఈ௙ഁ

+ 𝒕ଷ௙ഁ) − ൫𝝓ఉ ⊗ 𝒆ఉ
௥ ൯𝑲௥൫𝒕ఈ௙య

+ 𝒕ଷ௙య
൯ + ൫𝝓ఋ,ఉఊ ⊗ 𝒆ఋ

௥ ൯𝒕ఈ௙ഁ,ം
−

஺ೝ

                        −൫𝝓ఉ,ఊ ⊗ 𝒆ఉ
௥ ൯𝑲௥𝒕ఈ௙య,ം

− ൫𝝓ఉ ⊗ 𝒆ఉ
௥ ൯𝑲௥ᇱ𝒕ଷ௙య

ᇲ൰ 𝑑𝐴௥ , (48) 

 𝝅௛ = ∫ ൬൫𝝍,ఉ ⊗ 𝒆ଷ
௥൯(𝒕ఈ௙ഁ

+ 𝒕ଷ௙ഁ) − (𝝍 ⊗ 𝒆ଷ
௥)𝑲௥൫𝒕ఈ௙య

+ 𝒕ଷ௙య
൯ + ൫𝝍,ఉఊ ⊗ 𝒆ଷ

௥൯𝒕ఈ௙ഁ,ം
          −

஺ೝ

                           −൫𝝍,ఊ ⊗ 𝒆ଷ
௥൯𝑲௥𝒕ఈ௙య,ം

− (𝝍 ⊗ 𝒆ଷ
௥)𝑲௥ᇱ𝒕ଷ௙య

ᇲ൰ 𝑑𝐴௥, (49) 

 𝜷௛ = ∫ ൬൫𝝓ఉ ⊗ 𝒆ఉ
௥ ൯൫𝒕ఈ௙య

+ 𝒕ଷ௙య
൯ + ൫𝝓ఉ,ఊ ⊗ 𝒆ఉ

௥ ൯ ቀ𝒕ఈ௙య,ఊ + 𝒕ଷ௙ംᇱቁ − ൫𝝓ఉ ⊗ 𝒆ఉ
௥ ൯𝜥௥𝒕ଷ௙య

ᇲ൰ 𝑑𝐴௥
஺ೝ , (50) 

 𝜶௛ = ∫ ൬(𝝍 ⊗ 𝒆ଷ
௥)൫𝒕ఈ௙య

+ 𝒕ଷ௙య
൯ + ൫𝝍,ఊ ⊗ 𝒆ଷ

௥൯ ቀ𝒕ఈ௙య,ఊ + 𝒕ଷ௙ംᇱቁ − (𝝍 ⊗ 𝒆ଷ
௥)𝜥௥𝒕ଷ௙య

ᇲ൰ 𝑑𝐴௥
஺ೝ , (51) 

 𝒏ఏ
௛ = ∫ (𝒕ఈఏ + 𝒕ଷఏ)𝑑𝐴௥

஺ೝ , (52) 

 𝒑௛௥
= ∫ ቀ𝒕ଷ௙య

ᇲቁ 𝑑𝐴௥
஺ೝ , (53) 

 𝒒௛௥
= ∫ ቀ𝒚௠௥ × 𝒕ଷ௙య

ᇲቁ 𝑑𝐴௥
஺ೝ , (54) 

 𝜹௛ = ∫ ቀ൫𝝓ఉ ⊗ 𝒆ఉ
௥ ൯𝒕ଷ௙య

ᇲቁ 𝑑𝐴௥
஺ೝ , (55) 

 𝝌௛ = ∫ ቀ(𝝍 ⊗ 𝒆ଷ
௥)𝒕ଷ௙య

ᇲቁ 𝑑𝐴௥
஺ೝ , (56) 

with 𝒕௜௩ being the vectors that are conjugated with a given vector 𝛿𝒗 w.r.t 𝝉௜
௥ , when the operation 𝝉௜

௥ ⋅ 𝛿𝒇௜
௛௥

 is 
performed. The complete expression for each 𝒕௜௩ has an intricate form and the authors have chosen to omit it for 
conciseness. For the external work, one gets 

 ∫ 𝒃ഥ ⋅ 𝛿𝒙𝑑𝐴௥
஺ೝ = ൫𝒒ഥଵ

௠ + 𝒒ഥଵ
௛൯ ⋅ 𝛿𝒅ଵ + 𝒒ഥଶ

௛ ⋅ 𝛿𝒅ଶ, (57) 

where 

 𝒒ഥଵ
௠ = [𝒏ഥ௠ 𝜞்𝒎ഥ ௠ 𝜷ഥ௠ 𝜶ഥ௠]் and 𝒒ഥଵ

௛ = [𝒏ഥ௛ 𝜞்𝒎ഥ ௛ 𝜷ഥ௛ 𝜶ഥ௛]், (58) 

 𝒒ഥଶ
௛ = [𝒑ഥ௛ 𝒒ഥ௛ 𝝆ഥ௛ 𝝅ഥ௛]் , (59) 

 𝛿𝒅ଵ = [𝛿𝒖 𝛿𝜽 𝛿𝒓 𝛿𝒑]் and 𝛿𝒅ଶ = [𝛿𝜼௥ 𝛿𝜿௥ 𝛿𝒓ᇱ 𝛿𝒑ᇱ]். (60) 
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with mid-line contributions 

 𝒏ഥ௠ = 𝒏ഥ௕,௠ + 𝒏ഥ௧,௠ = ∫ 𝒃ഥ 𝑑𝐴௥
஺ೝ + ∫ 𝒕̅ 𝑑𝐶௥

஼ೝ , (61) 

 𝒎ഥ ௠ = 𝒎ഥ ௕,௠ + 𝒎ഥ ௧,௠ = ∫ ൫𝒚௠ × 𝒃ഥ൯ 𝑑𝐴௥
஺ೝ + ∫ (𝒚௠ × 𝒕̅) 𝑑𝐶௥

஼ೝ , (62) 

 𝜷ഥ௠ = 𝜷ഥ௕,௠ + 𝜷ഥ௧,௠ = ∫ ൫𝝓ఉ ⊗ 𝒆ఉ൯𝒃ഥ 𝑑𝐴௥
஺ೝ + ∫ ൫𝝓ఉ ⊗ 𝒆ఉ൯𝒕̅ 𝑑𝐶௥

஼ೝ , (63) 

 𝜶ഥ௠ = 𝜶ഥ௕,௠ + 𝜶ഥ௧,௠ = ∫ (𝝍 ⊗ 𝒆ଷ)𝒃ഥ 𝑑𝐴௥
஺ೝ + ∫ (𝝍 ⊗ 𝒆ଷ)𝒕̅ 𝑑𝐶௥

஼ೝ , (64) 

and thickness contributions 

 𝒏ഥ௛ = 𝒏ഥ௕,௛ + 𝒏ഥ௧,௛ = 𝒐, (65) 

 𝒎ഥ ௛ = 𝒎ഥ ௕,௛ + 𝒎ഥ ௧,௛ = ∫ 𝜞்൫𝑭ଷ
௠𝜞ଵೞ

் + 𝑙ఈ𝑭ఈ
௠𝜞ଶೞ

் ൯൫𝒉 × 𝒃ഥ൯ 𝑑𝐴௥ +
஺ೝ  

                                   + ∫ 𝜞்൫𝑭ଷ
௠𝜞ଵೞ

் + 𝑙ఈ𝑭ఈ
௠𝜞ଶೞ

் ൯(𝒉 × 𝒕̅) 𝑑𝐶௥
஼ೝ , (66) 

 𝜷ഥ௛ = 𝜷ഥ௕,௛ + 𝜷ഥ௧,௛ = ∫ ൣ−൫𝝓ఉ ⊗ 𝒆ఉ
௥ ൯𝑲௥𝑸்𝜞ଵೞ

் + ൫𝝓ఉ,ఈ ⊗ 𝒆ఉ
௥ ൯𝑙ఈ𝑸்𝜞ଶೞ

் ൧൫𝒉 × 𝒃ഥ൯ 𝑑𝐴௥
஺ೝ + 

                               + ∫ ൣ−൫𝝓ఉ ⊗ 𝒆ఉ
௥ ൯𝑲௥𝑸்𝜞ଵೞ

் + ൫𝝓ఉ,ఈ ⊗ 𝒆ఉ
௥ ൯𝑙ఈ𝑸்𝜞ଶೞ

் ൧(𝒉 × 𝒕̅)𝑑𝐶௥
஼ೝ , (67) 

 𝜶ഥ௛ = 𝜶ഥ௕,௛ + 𝜶ഥ௧,௛ = ∫ ൣ−(𝝍 ⊗ 𝒆ଷ
௥)𝑲௥𝑸்𝜞ଵೞ

் + ൫𝝍,ఈ ⊗ 𝒆ଷ
௥൯𝑙ఈ𝑸்𝜞ଶೞ

் ൧൫𝒉 × 𝒃ഥ൯ 𝑑𝐴௥
஺ೝ + 

                             + ∫ ൣ−(𝝍 ⊗ 𝒆ଷ
௥)𝑲௥𝑸்𝜞ଵೞ

் + ൫𝝍,ఈ ⊗ 𝒆ଷ
௥൯𝑙ఈ𝑸்𝜞ଶೞ

் ൧(𝒉 × 𝒕̅) 𝑑𝐶௥
஼ೝ , (68) 

 𝒑ഥ௛ = 𝒑ഥ௕,௛ + 𝒑ഥ௧,௛ = ∫ 𝑸்𝜞ଵೞ
் ൫𝒉 × 𝒃ഥ൯𝑑𝐴௥

஺ೝ + ∫ 𝑸்𝜞ଵೞ
் (𝒉 × 𝒕̅)𝑑𝐶௥

஼ೝ  , (69) 

 𝒒ഥ௛ = 𝒒ഥ௕,௛ + 𝒒ഥ௧,௛ = ∫ 𝒚௠௥ × ቀ𝑸்𝜞ଵೞ
் ൫𝒉 × 𝒃ഥ൯ቁ 𝑑𝐴௥

஺ೝ + ∫ 𝒚௠௥ × ቀ𝑸்𝜞ଵೞ
் (𝒉 × 𝒕̅)ቁ 𝑑𝐶௥

஼ೝ , (70) 

 𝝆ഥ௛ = 𝝆ഥ௕,௛ + 𝝆ഥ௧,௛ = ∫ ൫𝝓ఉ ⊗ 𝒆ఉ
௥ ൯𝑸்𝜞ଵೞ

் ൫𝒉 × 𝒃ഥ൯𝑑𝐴௥
஺ೝ + ∫ ൫𝝓ఉ ⊗ 𝒆ఉ

௥ ൯𝑸்𝜞ଵೞ
் (𝒉 × 𝒕̅)𝑑𝐶௥

஼ೝ , (71) 

 𝝅ഥ௛ = 𝝅ഥ௕,௛ + 𝝅ഥ௧,௛ = ∫ (𝝍 ⊗ 𝒆ଷ
௥)𝑸்𝜞ଵೞ

் ൫𝒉 × 𝒃ഥ൯𝑑𝐴௥
஺ೝ + ∫ (𝝍 ⊗ 𝒆ଷ

௥)𝑸்𝜞ଵೞ
் (𝒉 × 𝒕̅)𝑑𝐶௥

஼ೝ . (72) 

Note that both internal and external virtual works are composed of a mid-line and a thickness term. 
Performing the calculations for the line terms, stress resultants that are energetically conjugates of 𝜼௥, 𝜿௥ , 𝒓, 𝒑, 𝒓ᇱ 
and 𝒑ᇱ, arise, and are completely equivalent to the generalized stress resultants from Pimenta and Campello [9] 
(and later with Dasambiagio [11]) (forces (𝒏), moments (𝒎), generalized bi-shear (𝝆, 𝝅), and bi-moment (𝜶, 𝜷) 
resultants). For the thickness terms, apart from new contributions to the already defined resultants, there are 
completely new stress resultants that are energetically conjugated to 𝜽, 𝜼௥ᇱ, 𝜿௥ᇱ, 𝒓ᇱᇱ, 𝒑ᇱᇱ. 

For the external virtual work, there are external resultants that have already appeared in the aforementioned 
references ([9], [11]), conjugated to 𝒖, 𝜽, 𝒓 and 𝒑, and also new ones that are conjugated to 𝜼௥, 𝜿௥ , 𝒓ᇱ and 𝒑ᇱ. Note 
that, if it is assumed that the external loads act only at the mid-lines (i.e., 𝒉 = 𝒐), it follows that 𝒒ഥଵ

୦ = 𝒒ഥଶ
୦ = 𝒐. 

Using definitions (34)-(35), (43)-(45) and (58)-(60) in (30)-(32), the weak form of the current formulation becomes 

 𝛿𝑊 = ∫ ൣ൫𝝈ଵ
௠௥

+ 𝝈ଵ
௛௥

൯ ⋅ 𝛿𝜺ଵ
௥ + 𝝈ଶ

௛௥
⋅ 𝛿𝜺ଶ

௥ − ൫𝒒ഥଵ
௠ + 𝒒ഥଵ

௛൯ ⋅ 𝛿𝒅ଵ − 𝒒ഥଶ
௛ ⋅ 𝛿𝒅ଶ൧𝑑𝛺௥

ఆೝ = 0, ∀ 𝛿𝒅ଵ, 𝛿𝒅ଶ (73) 

2.3 Tangent operator and constitutive equation 

Up to the date of submission of this full paper, the complete expression for the tangent operator is not 
available. This is the most challenging part of the formulation and is the current priority of the authors. It is not 
needed to enforce the model´s equilibrium, but plays a pivotal role in the numerical solution, which will be 
conducted through the finite element method.  

Also, no constitutive equation was enforced. Since the deformation gradient is analytically expressed by 
means of its column-vectors, as done previously in Pimenta and Campello [9], Dasambiagio [11] and Kassab [12], 
the constitutive equations used therein (namely, from Kirchhoff-Saint-Venant’s and Simo-Ciarlet’s hyperelastic 
materials) can be readily used here to calculate the stress resultants. For the tangent operator, some partial 
derivatives are material-specific. 
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3  Conclusions 

The formulation proposed so far is the result of approximately six months of work in a four-year duration 
long PhD research. It provides insights into how the formulation will be further developed and is the result of 
testing of different ways to formalize the model. Since the kinematical description does not depend on the chosen 
deformation modes, and the equilibrium is written exactly in terms of the Virtual Work Theorem, a robust and 
versatile description was achieved. Also, the framework enables the introduction of advanced constitutive 
equations in future steps of this work. The main challenge of the current research is expected to be the obtention 
of the analytical expression for the tangent operator. 
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