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Abstract. In this Article, we present a shell finite element, with 6 nodes, and a special non-conforming
rotational field constructed from an incremental scalar rotation variable and displacement field. This
approach eliminates the need for any numerical techniques such as penalties or Lagrange multipliers to
address C1 continuity, a kinematic requirement for Kirchhoff-Love shell theory. The quadratic displacement
field of the mid-plane is represented by the standard degree-of-freedom at the element’s 6 nodes. The
element has been tested under very different simulations scenarios ans has proved to be a reliable element
for simulation of thin shells even for large displacements, rotations and strains.
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1 Introduction

Shell Finite Elements (FEM) hold significant research importance even in present days due to their
widespread applications in structural engineering, such as slabs, domes, metal sheets, and other thin
structures. However, when dealing with simulations of extremely thin structures, there can be numerical
challenges with existing finite element software. These challenges are generally related to the unrealistic
stiffness of the shell (or thin 3D domain) at the FEM routine level, leading to untrustworthy results.

To address this issue and to seek a more straightforward, simple and reliable approach, the authors
have developed the current model (See [1]). This work builds upon the findings of previous studies
conducted by the group (refer to [2], [3], [4] and [5]. The main focus of this research is to introduce a
novel technique for enforcing C1 displacement continuity uniquely based on shell kinematics and shell
usual degrees of freedom, with out the use of known numerical tools, such as penalty, Lagrange methods
or special spacial shape functions.

The exact shell finite element developed here is suitable for simulation of very thin structures with
both large displacements, rotations and strains. It have been recently published in [1], and is presented
here to summarize recent advances. The shell simulations, reveals trusty and reliable results for very
different numerical examples, demonstrating the importance of this recent development and promising
advancements in the field of structural engineering.

2 Shell Model

2.1 Shell Kinematics

The kinematics of this shell element is established based on the following conceptual framework. The
critical kinematic variables are presented in Figure 1. The shell’s kinematics is based in two configurations:
the initial configuration, termed the "reference configuration," which remains constant over time (midle
surface of the shell referred as Ωr ⊂ R2 with its boundary as Γr = ∂Ωr), and the subsequent configuration
(current configuration) depicting the shell’s position through various time steps within the simulation.
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Figure 1. Shell kinematics.

The shell middle surface of the current configuration is parameterized as Ω ⊂ R3 with its boundary as
Γ = ∂Ω. Both configurations, the reference and the current, incorporate thickness and volume parameters
(V r and V , respectively).

For simplicity, it is assumed that the midle surfaces Ωr and Ω consistently lie within the middle thick-
ness of the shell, with the shell’s thickness being described by the parameter range Hr = [−hr/2,+hr/2]
(where shell thickness = hr).

The reference configuration is defined together with an orthonormal right-handed coordinate system
(RCCS): er

i situated on Ωr. The third vector of this RCCS is orthogonal to the shell’s central surface.
An origin O serves as a significant fixed point for all configurations and is employed for kinematic
descriptions. Any point "P " on the shell in the current configuration corresponds to a point in the reference
configuration’s er

i system. The position of an arbitrary point "P r" in the RCCS is articulated by the
equation:

ξ = ζ + ar , (1)

where ζ = ξαer
α, ξα ∈ Ωr is the vector connecting the fixed point O to the projection of P r onto the

reference plane Ωr, and ar = ξ3er
3, ξ3 ∈ Hr, represents a normal vector to the reference plane (director

vector). It’s worth noting that ξ1, ξ2, ξ3 establishes a three-dimensional Cartesian framework.
The corresponding point P in the current configuration is parameterized as follows:

x = z + a , (2)

where x = x̂(ξ) denotes the vector field that defines the shell’s motion and, consequently, the position of
P in relation to the fixed origin O, z signifies its position within the middle-surface, and a represents its
director. This leads to the relationship:

z = ζ + u , (3)

where u signifies the displacement of the shell’s central plane.
A pivotal element of the shell’s kinematics is the introduction of the rotation tensor Q, which

represents the rotation of the coordinate basis from the reference configuration (er
i ) to the current

configuration (ei), specifically utilized in this formulation for the rotation of the director vector. This is
expressed by the equations:

Q = ei ⊗ er
i , i ∈ 1, 2, 3 and a = Qar . (4)

The detailed parametrization of the tensor Q is elaborated upon in Section 2.2.
The calculation of the deformation gradient (F ) is carried out using the following expression:

F = ∂x

∂ξ
= ∂(z + Qar)

∂ξα
⊗ er

α + ∂ (z + Qar)
∂ξ3

⊗ er
3, (5)

which can be simplified as

F = fα ⊗ er
α + f3 ⊗ er

3 where, fα = z,α + Q,αar and f3 = Qer
3 = e3 . (6)

Here, the first and second derivatives of z are computed as (using Equation 3)

z, α = eαr + u, α and z, αβ = u, αβ with (•), α = ∂(•)
∂ξα

. (7)

Equation 6 can be rephrased using curvature vector and tensors as

fα = z, α+ κα × a with Kα = Q,αQT and κα = axial (Kα) . (8)
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Next, we introduce the back-rotated deformation gradient F r as follows:

F r = QT F = QT (fα ⊗ er
α + f3 ⊗ er

3) , (9)

F r = QT (z,α + κα × a) ⊗ er
α + er

3 ⊗ er
3 and F r = I + γr

α ⊗ er
α . (10)

In Equation 10, we introduce the concept of back-rotated strains and generalized back-rotated
cross-section strains:

γr
α = ηr

α + κr
α × ar , with ηr

α = QT z,α − er
α and κr

α = axial
(
QT Q, α

)
, (11)

where ηr
α represents the membrane deformation strains and κr

α represents the bending strains.

2.2 Rotations
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Figure 2. Rotation about a moving axis. Here, φ∆ is a scalar quantity that may be understood as the
incremental rotation applied to the body over the average axis em. In this article, we use the element side
as the moving axis of this incremental rotation.

We can express the absolute rotation θ around an axis e using the rotation vector θ = θe. However,
we parameterize the rotation tensor using the Rodrigues rotation vector α = tan(θ/2)

θ/2 θ. Unfortunately, this
parameterization confines the rotation within the range of −π < θ < +π, but this limitation is overcome
through an incremental procedure, as elaborated in the next subsection.

In this context, we can define the absolute rotation tensor (refer to Eq. 4 and Ref. [6]) as

Q = I + h(α)
(

A + 1
2A2

)
where h(α) = 4

4 + α2 , α = ∥α∥ and A = Skew(α) (12)

The equations presented previously represent the absolute rotational quantities. One significant
advantage of the Rodrigues rotation parameters is the simplicity of incremental description. According to
[7], [8], and [9], the incremental rotation description for consecutive simulation steps (i and i+ 1) can be
expressed as

Qi+1 = Q∆Qi where Qi+1 = Q̂ (αi+1) , Q∆ = Q̂(α∆) and Qi = Q̂ (αi) . (13)

As Q operates on the director, we can also define that ei+1
3 = Q∆ei

3 to update the rotational scheme
in our shell formulation. The incremental Rodrigues rotation parameters offer a significant advantage in
that we can implement a straightforward update scheme for the absolute rotation vector (α) based on the
values from previous steps, without needing to construct the rotation tensor (see [10] and [8]). Thus,

αi+1 = 4
4 − αi · α∆

·
(

αi + α∆ − 1
2αi × α∆

)
, (14)

where αi+1 represents the consecutive step from αi.
Here, we also employ a significant relation, initially introduced in [11] and [12], where the rotation

vector α∆ can be expressed as a rotation about a moving axis, utilizing a scalar parameter φ∆. This
approach was also adopted in [3]. Geometrically, the scalar φ∆ can be interpreted as a degree of freedom
for rotation about a moving axis. This interpretation was applied to rod rotations in earlier work; here,
we extend it to shell-director rotations as in [2].

Figure 2 provides a schematic representation of the rotation scheme employed in our formulation.
In the left and right regions of the image, two consecutive simulation steps are depicted. The vector e1
undergoes rotation during these steps, transitioning from ei

1 to ei+1
1 , with the average vector between

them denoted as em
1 (located in the middle corner of Figure 2). Unlike [11], in this study, we do not
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use the vector e3 to calculate the rotation vector α∆. Instead, we employ the vector e1, which can be
computed solely using the displacement field. After defining α∆ (solely based on displacements and φ∆),
we can determine Q∆, which is applied in the shell kinematics (rotating the shell director e3, as discussed
previously).

Through algebraic manipulation of previous Equations, and considering more detailed explanation in
[1], it can be demonstrated that

ei+1
1 − ei

1 = α∆ × em
1 where em

1 = 1
2

(
ei+1

1 + ei
1
)

and α∆ = ei
1 × ei+1

1
∥em

1 ∥2 + φ∆
em

1
∥em

1 ∥
. (15)

2.3 Variational formulation, Strain Energy, Neo-Hookean material

The Neo-Hookean isotropic material discussed in this section, which forms the basis for most of the
numerical examples in this paper, is defined by the polyconvex strain energy function as follows. Other
material formulation may be checked in [1]:

ψ = 1
2λ

(
1
2

(
J2 − 1

)
− ln (J)

)
+ 1

2µ (I1 − 3 − 2 ln (J)) where: (16)

• I1 = tr,C = fi · fi

• I2 = tr [Cof C] = gi · gi

• I3 = det C = J2 = (f1 · (f2 × f3))2

• λ and µ - Lamé coefficients (representing material properties)
• ψ = ψ (F ) - Helmholtz free energy (Strain energy function)
• C = F T F - Right Cauchy-Green tensor.

3 Finite Element

This article presents a triangular element configuration featuring 6 nodes. Within this setup,
displacements are described by a quadratic interpolated field, while an additional scalar rotation parameter
is incorporated into each of the central-side nodes. By combining this scalar with the displacement Degrees
of Freedom (DoF), it is possible to formulate a non-conformal, incremental, linear rotational field. For a
more comprehensive understanding, please refer to [1].

The central-side node, situated precisely midway between the corner-nodes, plays a pivotal role in
this context. Furthermore, it’s important to mention that the element begins in a flat state, without any
curvature. This characteristic ensures that membrane locking, as discussed in [10], is not anticipated.
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Figure 3. 6-Node Shell element DOF.

The rotation vector α is an internal-calculated variable of the shell finite element and is defined
within a nonconforming linear field structure similar to the approach presented in [5]. However, in contrast
to having α as a nodal degree of freedom (DOF), we derive it using the displacements and a scalar
parameter φ∆. This scalar φ∆ is the actual DOF that is shared between neighboring elements. This novel
approach constitutes a significant advancement in this model and support several key kinematic aspects
of this formulation. The rotation field is no longer an entirely independent field that is decoupled from
displacement. Instead, rotation is now constructed in conjunction with displacement and a rotation-related
scalar DOF.

From previous equations, the displacement-dependent aspect of α∆ is determined using ei
1 and ei+1

1 .
Utilizing Equation 7, it can be verified that the normalized tangent vector at the midside nodes for both
time steps ti and ti+1 is computed as:
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e1 = z,1

∥z,1∥
with z,1 = er

1 + u,1 . (17)

Concerning the equations above, it is noteworthy that in the triangular element with six nodes
(characterized by a quadratic displacement field), the derivative u,1 is solely a function of the vertex
displacement. The node numbering scheme is presented in Figure 3, and these nodes are employed in
defining u,1 (see [1].

From previous equations, it can be seen that the rotational field computed at the element’s sides is
determined by the degrees of freedom shared among neighboring elements. Consequently, even though
α is internally computed within each element, it remains numerically consistent across all simulation
steps for adjacent elements. This consistency in the rotation maintains the continuity of the rotational
field at midside nodes, a foundational attribute of this shell kinematic model. It’s important to note that
enforcing rotation continuity only at the midside nodes does not pose a problem (as discussed in [5] and
[4]).

Another important feature in this element, is that the rotation is introduced incrementally. Conse-
quently, during each step increment, the rotation vector α is updated and is utilized in accordance with
Equations 14 and 15.

Since an incremental approach is utilized to evaluate the rotation field and curvature, the incremental
parameters must be reset at every load step. For each load step, the element recalculates these incremental
parameters to determine the final values for these fields. Consequently, at each load step at the finite
element level we must enforce α∆ = 0 , φ∆ = 0 .

4 Numerical examples

This section presents numerical examples assessing the element’s reliability under various loading
and stress conditions. A more complete set of examples and test und different conditions is presented in
[1]. Due to consiseness in this article, we are going to present only 3 important examples, in order to
demonstrate: 1) numerical stability; 2) locking behavior; 3) large displacements and rotations.

Simulated outputs are compared with literature data, acknowledging potential differences due to
distinct shell element assumptions. Such small variations in displacement may arise from model differences
like shear-rigid, shear-flexible, and rod models.

4.1 Square plate—linear bending locking analysis

In this examples, we employ the shell element to replicate the behavior of a square plate with
simple supported sides, subjected to a uniformly distributed vertical load (q) within the linear range.
This scenario aligns with simulations conducted in [5] and [13], specifically targeting the analysis of
bending-locking effects. The plate possesses a planar structure, and when dealing with slender thickness,
the utilization of shell elements leads to a phenomenon known as locking, where the elements exhibit
unrealistic stiffness, resulting in nearly negligible displacements. Since only the initial simulation step is
executed, the stiffness matrix lacks the inclusion of membrane effects.

The geometry is presented in Figure 4 together with the graph of normalized vertical displacement.
Key attributes of the plate include a side length (L) of 2000, material constants (E and ν) set at 1000
and 0.3 respectively, and thickness (h) ranging across values of 0.2, 0.02, 0.002, 0.0002, 0.00002, and
0.000002. The reference point for vertical displacement adheres to the classical analytical Kirchhoff
solution expressed as wKirchhoff = 0.0444qL4/Eh3 ([14] and [15]) for a square plate under simple support
conditions. The results demonstrate convergence of the element, particularly evident for extremely thin
plates until the ratio h/L reaches 1 × 10−6.

4.2 Pinched cylinder

This example has been a recurring topic in shell studies, extensively discussed across various articles
(refer to [5], [16], [4], [17], [13], [2]). The cylinder possesses a radius (R) of 100, length (L) of 200, and
thickness (h) of 1. The shell’s mechanical properties are characterized by E = 30 · 103 and ν = 0.3, while
the applied pinching force is denoted as P = 20000.

The depiction of the cylinder FEM model can be observed in Figure 5, also with the vertical
displacement of point A and horizontal displacement of point B vs applied force. These displacements are
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Figure 4. Square Plate - Linear bending locking analysis. Normalized Central Deflection vs Side division
in on quarter plate

compared using both a coarse mesh (6272 elements with 28 side elements per one-quarter of the cylindrical
shell) and a fine mesh (10368 elements with 36 side elements per one-quarter of the cylindrical shell). The
simulation results exhibit a close alignment with the findings in existing literature, specifically the works
of Viebahn [4] and Sze [17].
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Figure 5. Pinched cylindrical shell mounted on rigid end diaphragms. Vertical force vs vertical (Point A)
and lateral (Point B) displacement.

5 Conclusions

This paper introduces a triangular nonlinear finite element suitable for large displacement, strains
and rotations of thin and very thin shells. It’s simple and has demonstrated to be reliable. It uses a
quadratic displacement field, a linear rotation fild built from displacements and a scalar rotation DoF.
No extra numerical parameters such as penalty methods, or Lagrange multipliers are required. This new
element does not present shear locking like other elements available in literature.

Numerical examples in section 4 highlight the method’s prowess, reliability in linear/non-linear
scenarios: elastic stability, buckling, bending, varied stresses, shell-locking, multibranched shells, thickness
changes, anisotropic membranes (see more into [1]).
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