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Abstract. The behavior of quasi-brittle materials, such as concrete, is closely tied to their heterogeneous structure,
leading to complex responses to applied loads, including the formation of localized zones of damage. Tradi-
tional continuum mechanics models fail to adequately consider the influence of microstructure. To address this
limitation, generalized continuum theories have emerged, such as the micromorphic theory, which incorporates
additional degrees of freedom to capture the material’s microstructure. Additionally, these theories can effectively
handle localization issues in quasi-brittle materials represented as elastic-degrading media due to their nonlocal
nature. In this study, we investigate the influence of heterogeneity on determining constitutive relations for micro-
morphic media using a homogenization approach, with a particular focus on quasi-brittle materials. By employing
a homogenization technique, the effective constitutive relations for the micromorphic continuum are obtained con-
sidering the heterogeneity in a finer-scale. This miscrostructure formed by aggregates and matrix considered in
the finer-scale is generated by the take-and-place algorithm and its behavior is described by a classical continuum.
Furthermore, an important challenge when modeling with the micromorphic theory is the determination of the 18
elastic parameters required for an elastic isotropic medium. To overcome this obstacle, through this homogeniza-
tion framework, only classical parameters for the microstructure components are required for the analysis. An
analysis is here conducted in order to understand the effect of different characteristics of the finer-scale, as mesh,
microcontinuum size, and heterogeneity distribution, on the resulting macroscopic micromorphic constitutive rela-
tions. This work could lead to models that are able to capture the microstructure influence, often disregarded when
modeling quasi-brittle media, associated to a generalized continuum theory.
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1 Introduction

Considering the classical continuum theory, a material is kinematic and statically described based on average
macroscopic characteristics. These characteristics are defined adopting the concept of a material particle [1] as-
sociated to a representative volume element (RVE) [2–4]. The RVE for a material point of a continuum mass is a
material volume that is statistically representative of the infinitesimal material neighborhood of that material point
[5–7].

Considering the modeling of damage and fracture for heterogeneous materials (e.g., composite solids, mix-
tures and multicomponent fluids, soils, and rocks), their internal structure directly influences the structural be-
havior. This leads to a complex degradation process, which is strongly correlated to the inhomogeneities at the
microscales and to defects that may exist at such scales. Therefore, the existence of a representative volume that
includes a considerable number of microheterogenities, allowing the representation of local properties by mean
values and continuous variables [7], is greatly attractive specially when associated to the idea of Continuum Dam-
age Models. In CDM the medium is modeled as a continuum body macroscopically and the collective effect of
damage is described by field variables denominated damage variables [8].

Continuum damage models, however, have a major drawback, as finite element computations based on these
models may suffer from a number of issues, being one of the most studied problems in the literature their strong
mesh dependency. These issues emerge from the softening behavior of such models characterized by a reduction
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in the load-carrying capacity of the material when a certain deformation threshold is reached. This leads to the
concentration of the degrading phenomena in a certain part of the body, process called numerical strain localization.

One approach described in the relevant literature able to deal with the above shortcoming, is the adoption of
generalized continuum theories. Generalized continuum theories are based on the generalization of standard con-
tinuum mechanics of Cauchy through the expansion of its basic working hypotheses. These generalizations, first
introduced by Voigt [9] and the brothers Cosserat [10], involve additional degrees of freedom (higher order con-
tinua) or/and higher order gradients of the displacement fields (higher grade continua) [11–14]. The micromorphic
continuum theory [15–17], included in the former category, introduces an internal length in its formulation, which
is related to an additional field that enriches the continuum kinematics with effects connected to the microstruc-
ture of the material. Hence, this generalized theory is well suited to model heterogeneous materials wherein the
RVE concept associated to a classical continuum does not represent satisfactorily all the phenomena related to the
influence of the substructure or the structural dimensions are small comparatively to the microstructure.

An important obstacle in adopting the micromorphic theory, despite its advantages, is the need to determine
the elastic constitutive parameters required for such theory. In the asymmetric theory more than 1000 constitutive
coefficients are involved in the general anisotropic case. Even for isotropic materials, the constitutive equations
contain 18 material constants. A homogenization strategy is here used to address this problem [18] and also
extended to the case of a heterogeneous material. This work presents a study of this technique applied to hetero-
geneous quasi-brittle materials, more specifically concrete, building the foundation for subsequent modeling of
heterogeneous micromorphic media associated to elastic-degrading models [19].

2 Micromorphic media

In the micromorphic theory, every material point within the macrocontinuum is considered as a continuum of
small extent, forming a deformable particle. In a linear approximation, the following strain tensors can be defined
[16, 17]

ϵkl = ul,k − ϕlk, 2ekl = ϕkl + ϕlk, γklm = ϕkl,m (1)

in which ϵkl, ekl, and γklm are the linear strain tensors; ul is the displacement vector related to the particle centroid;
ϕkl = χkl − δkl is the microdisplacement tensor.

For an isotropic linear elastic micromorphic solid, the following constitutive equations can be obtained [20]:

tkl = Aklmnϵmn + Eklmnemn, skl = Emnklϵmn +Bklmnemn, and mklm = Clmknpqγnpq (2a,b,c)

where tkl is the non-symmetric Cauchy stress tensor; skl is a symmetric stress tensor named micro-stress average
[16]; mklm is the stress moments tensor; and Aklmn, Bklmn, Cklmnpq, Eklmn are the constitutive moduli.

3 Homogenization of a classical heterogeneous medium towards a micromorphic contin-
uum

In the relevant literature, well-established analytical and discrete formulation of the micromorphic theory can
be found. Nevertheless, the identification of the corresponding constitutive laws and the determination of the high
number of constitutive parameters limit its practical application. To overcome these obstacles, a homogenization
strategy, proposed by da Silva et al. [18] and based on the principles presented by Hütter [21], is employed here.
This method involves a multiscale formulation for the construction of macroscopic micromorphic constitutive
relations using homogenized microscopic quantities obtained from the solution of boundary value problems at
the microscale according to the classical continuum theory. This strategy begins with models of the classical
continuum on the microscale, without making any constitutive assumptions on the macroscale. As a result, the
required material parameters are those found in the classical theory.

For this formulation, the domain V is conceived as divided into into small finite volumes ∆V (X), here called
microcontinuum. For the construction of the constitutive moduli, the material particles are subjected to Cauchy
stress states resulting from elementary states of strain. The Cauchy stress states σij at the microscale are obtained
adopting an analytical formulation presented in da Silva et al. [18]. This method approximates the microscale
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(microcontinuum scale) stress based on a micromorphic stress state at the macroscale (structural scale). Based on
this approximation, the micromorphic stress tensors at the macroscale are then obtained by homogenization. This
homogenization strategy can be applied to obtain the initial elastic tensor for the first step of the first iteration of
a non-linear analysis. In subsequent works, the authors intend to apply this technique associated with the scalar-
isotropic damage models proposed by Reges et al. [19] to model heterogeneous materials.

In order to incorporate the particle heterogeneity, each microcontinuum ∆V (X) is then considered as hetero-
geneous with a microscale model generated by the take-and-place algorithm. The take-and-place method, based on
Bažant et al. [22], Schlangen and van Mier [23], and Wittmann et al. [24], simulates size and spatial distributions
of aggregate particles by the random sampling principle of Monte Carlo. In this method, samples of particles are
taken from a source that follows a given grading curve and placed one by one into the analysis domain with no
overlapping with particles already placed. One commonly used continuous grading curve is given by Fuller (see
Wriggers and Moftah [25] for more details).

In order to guarantee that all aggregate particles are coated with a minimum thickness of mortar film, a
distribution factor (DF) is defined, where an offset on the radius of the particle is set, enlarging the aggregate size
prior to checking the existence of overlapping.

Another aspect of the microstructure generator is the definition of the shape of the particles, which is closely
related to the aggregate type [26]. For simulating both round and angular shapes, the aggregates can be modeled
as circular or polygonal/irregular particles.

After the microstructure is generated, a finite elements mesh is associated to it, wherein triangular and quadri-
lateral element can be used. The material properties for the aggregates are then set to each element whose position
coincides with a particle and the remained elements are set as having mortar matrix properties. The material
properties at the microscale are defined as for a linear-elastic classical medium.

After the microstructure generation and the mesh definition, a heterogeneous microcontinuum or RVE is
associated to each integration point of the model under analysis. Then, the homogenization technique described in
da Silva et al. [18] is processed for each element that composes the RVE. The homogenized stresses are obtained
as an average carried over the number of elements n per microcontinuum:

t̄kl =
1

∆V (X)

n∑
1

∫
∂∆V ’(X)

Ξkσ’iln’ids’(X’) (3)

m̄klm =
1

∆V (X)

n∑
1

∫
∂∆V ’(X)

Ξkσ’ilΞmn’ids’(X’) (4)

s̄kl =
1

∆V (X)

n∑
1

∫
∆V ’(X)

σ’kl dv’(X’) (5)

where ∂∆V ’, ∆V ’ and σ’il represents the contour, the volume and the Cauchy stress for each element in the
microcontinuum respectively; n’i is the normal to ∂∆V ’; Ξk is a position vector; t̄kl, m̄klm, and s̄kl are the
micromorphic stresses obtained by homogenization. The constitutive equations are then defined

t̄kl = Āklmnϵ̄mn + Ēklmnϕ̄mn, s̄kl = Ēmnklϵ̄mn + B̄klmnϕ̄mn, and m̄klm = C̄lmknpqγ̄npq (6a,b,c)

and the components of macroscopic micromorphic stress are determined, which, as a result of elementary states of
strain, consist of the terms of macroscopic micromorphic constitutive relations.

4 Study of the homogenization technique

In order to model non-linear problems with the micromorphic theory associated to a heterogenous microcon-
tinuum, an initial study of the proposed homogenization strategy is here presented aiming to evaluate the influence
on the constitutive relations of the type and size of the elements that compose the mesh for the microcontinuum as
well as the impact of the microcontinuum size. The results are presented in the following sections.
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4.1 Mesh study

To evaluate the impact on the homogenized constitutive operator of the type and size of the element that
composes the microcontinuum discretization, the meshes illustrated in Fig. 1 for quadrilateral elements and in
Fig. 2 for triangular elements were studied. A square heterogeneous microcontinuum of size 50 mm was consid-
ered for all the meshes and, for the microstructure, the following parameters: maximum sieve size dmax = 19
mm; minimum sieve size dmin = 9.5 mm; continuous particle distribution; spherical particles; particle fraction
PF = 30%; distribution factor DF = 0.2; n = 0.5 for the Fuller’s distribution [25]; Young’s modulus for the ag-
gregates Eparticle = 300 GPa; Poisson’s ratio for the aggregates νparticle = 0.2; Young’s modulus for the matrix
Ematrix = 30 GPa; Poisson’s ratio for the matrix νmatrix = 0.2.

(a) Mesh 1:
25 mm × 25 mm

(b) Mesh 2:
10 mm × 10 mm

(c) Mesh 3:
5 mm × 5 mm

(d) Mesh 4:
2.5 mm × 2.5 mm

(e) Mesh 5:
1 mm × 1 mm

(f) Mesh 6:
0.5 mm × 0.5 mm

Figure 1. Mesh study: quadrilateral microcontinuum meshes

(a) Mesh 1: average size
25 mm

(b) Mesh 2: average size
10 mm

(c) Mesh 3: average size 5
mm

(d) Mesh 4: average size
2.5 mm

(e) Mesh 5: average size 1
mm

Figure 2. Mesh study: triangular microcontinuum meshes

To each discretization, the same heterogeneous microstructure was associated, obtaining a heterogeneous
microcontinuum. Subsequently, the homogenization process was carried out and the elastic constitutive operator
for the micromorphic continuum obtained containing Āklmn, Ēklmn, Ēmnkl, B̄klmn, and C̄lmknpq (Eq. 6). Some
values obtained for the components of the constitutive tensors versus the element size are presented in Fig. 3.

Observing all the results obtained for each constitutive tensor, its is possible to identify a convergence in the
values for element sizes smaller than 5 mm for quadrilateral and triangular elements. For more refined meshes the
quadrilateral element presented a lower time for obtaining the constitutive tensor by the homogenization technique
due to the presence of fewer elements in the mesh.

It is important to note that the results for this study apply for a heterogeneous microstructure with the pa-
rameters previously specified for particle fraction, distribution factor, and sieve sizes. For other distributions,
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another study should be conducted to determine the element type and size that yield better results with the lowest
processing time.
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Figure 3. Mesh study: samples of components of the constitutive operators Aijkl, Eijkl, Bijkl, and Cijklmn

4.2 Microcontinuum size and distribution study

After the definition of the appropriate size and type of the element for the microstructure discretization, a
study of the microcontinuum size associated with an analysis of the influence on the constitutive operator of the
distribution randomness was conducted.

Adopting quadrilateral elements with dimension 5 mm, square RVE’s with sizes varying from 20 mm up to
120 mm were studied. For each microcontinuum size, 200 particle distributions were generated to evaluate the
variation of the components of the constitutive operator due to the randomness of the take-and-place algorithm.
Figure 4 shows some examples for the microstructure generated for the same input parameters considering a mi-
crocontinuum of size 100 mm. Figure 5 illustrates the values for some components obtained for a microcontinuum
of size 100 mm for the 200 distributions generated.

Figure 4. Distribution study: random generation of particles with same input parameters for microcontinuum of
size 100 mm

The observed behavior for the tensors Aijkl, Eijkl, Eklij , and Bijkl is similar, where components with in-
dexes 1111, 1122, 2211, 2222, 1212, 1221, 2112, and 2121 tend to an average value and the remaining components
oscillate around zero. This corresponds to the expected behavior of these tensors for a plane analysis due to the
uncoupling of the corresponding stress-strain measures. The components of the tensor Cijklmn present a tendency
to fluctuate around a average value, what also fits with the anticipated behavior for this type of analysis.

Considering all the microcontinuum sizes analyzed, the average value for each component for each RVE size
was calculated. The results are presented in Fig. 6 for the average values obtained versus the microcontinuum size.
The results for the tensors Aijkl, Eijkl, Eklij , and Bijkl are similar, where non-zero components tend to a certain
value with the increase in the microcontinuum size, probably due to the better representation of the microstructure
and its particles. For tensors Aijkl and Eijkl components that were expected as null presented a negligible fluctu-
ation around zero values. The average values obtained for the tensor Cijklmn present an exponential growth as the
microcontinuum increases, with no convergence to a value. These results may be correlated to the formulation of
the micromorphic theory where the tensor Cijklmn is more significant with the increase of the size of the material
particle, but further studies are necessary to attest this hypotheses.
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Figure 5. Distribution study: components of the constitutive operator Aijkl, Eijkl, Bijkl, and Cijklmn (microcon-
tinuum 100 mm)
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Figure 6. Distribution study: average of the components of the constitutive operator Aijkl, Eijkl, Bijkl, and
Cijklmn versus microcontinuum size

5 Conclusions

Considering the great potential of the micromorphic theory for properly representing materials with hetero-
geneous microstructure, this work presents an initial study of the adoption of a homogenization technique over a
concrete RVE described by classical continuum mechanics. The microstructure is generated through the take-and-
place algorithm in which, for the aggregate size distribution, a Fuller curve was used associated to the sieve sizes
specified by ABNT NBR 7211 [27] (25.0 mm to 4.75 mm). The behavior observed in the micromorphic consti-
tutive operators when considering heterogeneity agrees with the expected results, verifying the proper functioning
of the technique.

This work presents multiple possibilities for the study of the influence of the heterogeneous microstructure in
the structural behavior with the use of the micromorphic theory. The inclusion of voids in the microstructure and
the adoption of this strategy to model non-linear problems associated to the elastic degradation models proposed
by Reges et al. [19] are topics to be further explored by the authors.
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(in Portuguese “Fundação de Amparo à Pesquisa de Minas Gerais” - Grant PPM-00747-18), CNPq (in Portuguese
“Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico, Brazil” - Grant 316240/2021-4) and CAPES
(in Portuguese “Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior”)

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023



P. D. N. Reges, R. L. S. Pitangueira, L. L. Silva

References

[1] A. K. Mal and S. J. Singh. Deformation of elastic solids. Prentice Hall, Inc., Englewood Cliffs, NJ, USA,
1991.
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Gesellschaft der Wissenschaften, vol. 34, pp. 3–52, 1887.
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