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Abstract. We consider the problem of an elastic annular disk in equilibrium in the absence of body force. The
disk is fixed on its inner surface and compressed by a uniform pressure on its outer surface. The disk is made of a
cylindrically orthotropic material that is stiffer in the radial direction than in the tangential direction. Such material
properties are found in certain types of wood and carbon fibers with radial microstructure. We consider that the
disk is made of a cylindrically orthotropic St Venant-Kirchhoff material, which is a natural constitutive extension
from the linear to the nonlinear elasticity theory. The solution of this problem predicts material overlapping,
which is unphysical if either the pressure is large enough or the inner radius is small enough. A way to prevent
this anomalous behavior consists of imposing the local injectivity constraint through a constrained minimization
problem of the energy functional. We use both a penalty and an augmented Lagrangian formulation to obtain
convergent sequences of finite element approximations. Our results indicate that, to impose the local injectivity
constraint accurately, it is preferable to increase the degree of the finite element approximation than to increase the
number of finite elements in the mesh.

Keywords: Nonlinear elasticity, Orthotropy, Constrained Minimization, Non-smooth deformation, Finite element
method

1 Introduction

We consider the problem of an elastic annular disk with uniform thickness in equilibrium in the absence of
body force. The disk is fixed on its inner surface of radius Ri > 0 and compressed by a uniform pressure p > 0 on
its outer surface of radius Re > Ri. The disk is made of a cylindrically orthotropic material that has a constitutive
response that is stiffer in the radial direction than in the tangential direction. Material properties of this type are
found in certain types of woods, carbon fibers with radial microstructure, and fiber-reinforced composites [1–3].

In the context of the classical linear elasticity theory, the solution of this problem predicts material overlapping
for a large enough pressure, which is not physically acceptable. In addition, material overlapping is associated with
large strains, which violate the hypothesis of infinitesimal strains upon which the linear elasticity theory is based.
A natural constitutive extension of the linear to the nonlinear elasticity theory consists of considering that the disk
is made of an orthotropic St Venant-Kirchhoff material. In this case, there is a pressure above which the solution
of the corresponding nonlinear disk problem predicts material overlapping in an interior region of the disk. In
addition, there is a jump in the deformation gradient across an interior surface of the disk [4].

Fosdick and Royer-Carfagni [5] have proposed a theoretical approach to eliminate the anomalous behavior of
material overlapping in classical linear elasticity. The approach consists of minimizing the total potential energy
functional subject to the condition that the determinant of the deformation gradient be not less than a small positive
parameter.

In this work, we extend this investigation to the nonlinear elasticity theory by considering the problem of
minimizing the total potential energy functional of a nonlinear disk subject to the local injectivity constraint. We
use both a penalty and an augmented Lagrangian formulation to obtain convergent sequences of numerical solu-
tions that do not predict material overlapping and that correspond to non-smooth deformation fields. Analogous
fields were also reported by Aguiar and Rocha [4] in the study of the unconstrained nonlinear case.
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In Section 2, we formulate the disk problem as the minimization of the total potential energy functional
subjected to the local injectivity constraint. In Section 3, we consider a numerical example and present converging
results using both a penalty and an augmented Lagrangian formulation. In addition, we compare how accurately
each formulation imposes the local injectivity constraint. In Section 4, we present some concluding remarks.

2 The disk problem

Let B ⊂ R3 denote the undistorted reference configuration of a homogeneous hyperelastic solid in equilib-
rium. Points x ∈ B are mapped into points y ≜ f(x) = x + u(x), where f and u are the deformation and
the displacement fields, respectively. The boundary ∂B of B is composed of two non-intersecting parts, ∂1B and
∂2B, ∂B = ∂1B ∪ ∂2B, ∂1B ∩ ∂2B = ∅, such that f = f̄ on ∂1B, where f̄ is a given function, and the traction
field t̄ is applied on ∂2B. In this work, t̄ is a pressure load, which is constant in the deformed configuration
and given by t̄ = −p cof FN, where p > 0, cof F ≜ (detF)F−T , N is the outward unit normal to ∂2B, and
F ≜ ∇f = I+∇u, with ∇ denoting the gradient operator with respect to x and I denoting the identity tensor.

We consider the minimization of the total potential energy functional given by [6]

min
f∈Aε

E(f) , E(f) =
∫
B
W (F) dx+

p

3

∫
∂B

(cof FN) · f dx , (1)

where Aε is the set of kinematically admissible deformation fields, such that detF ≥ ε > 0 in B and f = f̄ on
∂1B, ε is a small positive parameter, and W is the strain energy density function.

In this work, B is an annular disk with inner radius Ri > 0, outer radius Re > Ri, and unitary thickness. In
addition, ∂1B and ∂2B are the inner and outer surfaces of the disk, respectively, f̄ = x, which means that the disk
is fixed on its inner surface, and p is a uniform pressure acting on the outer surface.

The disk is made of a cylindrically orthotropic St Venant-Kirchhoff material so that

W =
1

2
E · C[E] , E ≜

1

2
(FT F− I) , (2)

where C is the elasticity tensor, with the nonzero components c11, c22, c33, c12, c13, c23, c44, c55, c66; see, for
instance, Daniel and Ishai [3].

Let {eR, eΘ, eZ} denote the usual orthonormal cylindrical basis at x associated with the cylindrical coordi-
nates (R,Θ, Z), such that x = R eR(Θ) + Z eZ . Similarly, let {er, eθ, ez} and (r, θ, z) be the corresponding
orthonormal cylindrical basis and coordinates, respectively, at y, such that y = r er(θ) + z ez . Unless stated
otherwise, we shall omit the dependence of eR and er on Θ and θ, respectively.

We want to find a deformation field f , such that points x = (R,Θ, Z) ∈ [Ri, Re] × [0, 2π] × [0, 1] move
along radial lines according to

f(R,Θ, Z) = r(R) er(Θ) + Z ez , (3)

which corresponds to a displacement field with the form

u(R,Θ, Z) = ur(R) eR , ur(R) = r(R)−R . (4)

Since F ≜ ∇f , we have that

F = ν(R) er ⊗ eR + τ(R) eθ ⊗ eΘ + ez ⊗ eZ , ν(R) ≜ r′(R) , τ(R) ≜ r(R)/R , (5)

where the explicit dependence on x = (R,Θ, Z) is omitted and (·)′ denotes the derivative with respect to R.
It follows from eq. (1.b), eq. (2), eq. (4.b), and eq. (5) that the total potential energy functional E can be

written as

E =π

∫ Re

Ri

(c11
4

Ru′
r
4
+ c11 Ru′

r
3
+ c11 Ru′

r
2
+ c12 ur u

′
r
2
+ 2 c12 ur u

′
r +

c12
2R

u2
r u

′
r
2
+

c12
R

u2
r u

′
r

+
c22
R

u2
r +

c22
R2

u3
r +

c22
4R3

u4
r

)
dR+ π p

[
(Re + ur(Re))

2 −R2
i

]
,

(6)

where we have used the boundary condition ur(Ri) = 0. Note from eq. (6) that, even though the material is
orthotropic, the total potential energy functional depends only on the elastic moduli c11, c22, and c12.
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3 Numerical procedure and results

We consider a Finite Element formulation of the minimization problem given by eq. (1.a) and eq. (6), where
the displacement field u, which has the form given by eq. (4), is the unknown variable. Let Vh be a finite dimen-
sional space spanned by a set of basis functions {wi}, where h stands for the characteristic length of the finite
element. Then, an approximate minimizer uh ∈ Vh can be written as

uh =

m∑
i=1

si wi , (7)

where si ∈ R, i = 1, 2, 3, ...,m, is a degree of freedom and m is the number of degrees of freedom associated with
the discretization. In this work, we use Lagrange finite elements of degree d and a Gauss-Legendre quadrature rule
with 2 d points.

It follows from eq. (2) and eq. (5) that the radial normal stress Prr ≜ er · PeR, where P = ∂W/∂F is the
first Piola-Kirchhoff stress tensor, is given by

Prr(R) = P̂rr(τ, ν) ≜
[
c11 (ν

2 − 1) + c12 (τ
2 − 1)

]
ν/2 . (8)

It is possible to verify that, for |τ | <
√
1 + c11/c12, P̂rr is non-monotonic with respect to ν. Its inflection points

occur at ν = ν inf and ν = −ν inf , where

ν inf ≜

√
3

3

√
−τ2 c12 + c11 + c12

c11
. (9)

Aguiar and Rocha [4] have considered the minimization problem given by eq. (1.a) and eq. (6) without
imposing the local injectivity constraint detF ≥ ε > 0. The authors have observed that there is a value of
pressure p̄, below which we find smooth minimizers such that ν(R) > ν inf and detF > 0 in the whole disk. For
p > p̄, the authors have found minimizers that are non-smooth at R = RS ; furthermore, ν(R) < −ν inf < 0 for
R ∈ [Ri, RS) and ν(R) > ν inf > 0 for R ∈ (RS , Re]. These non-smooth minimizers were found by using a
numerical procedure that introduces RS as an additional variable of the problem. Here, we use a similar procedure.
We assume that the local injectivity constraint is active in R ∈ (Ri, RS) and then we search for the value of RS
that minimizes the total potential energy functional.

We impose the local injectivity constraint using both a penalty and an augmented Lagrangian formulation.
For that, we introduce the functionals

P(u, RS) ≜
δ

2

∫
B=

c2 dx+ δ inf

∫
B>

max
(
0, ν inf − ν

)2
dx , (10)

L(u, RS) ≜
∫
B=

(
−λ c+

δ

2
c2
)
dx+ δ inf

∫
B>

max
(
0, ν inf − ν

)2
dx , (11)

where λ = λ(R) is the Lagrange multiplier field associated with the constraint c ≜ detF − ε = 0 in B=, δ > 0
and δ inf > 0 are penalty parameters, B= = {x ∈ B |Ri < R < RS}, and B> = {x ∈ B |RS < R < Re}. The
functionals P and L are similar to the penalty functional used by Aguiar and Rocha [4], who have considered the
minimization problem given by (1.a) and eq. (6) without imposing the constraint detF ≥ ε. Here, however, the
integrals in B= have a different form because we impose detF > ε. In addition, note that RS is not limited to be
in the interval [Ri, Re]; for instance, RS < Ri means that B= = ∅ and B> = B, that is, the constraint is not active
anywhere in the disk. This is the expected behavior when p is small enough.

The discrete version of the minimization problem given by eq. (1.a) and eq. (6) can be written as

min
RS∈R

min
s∈Rm

F(s, RS) , F(s, RS) =

{
Eh(s) + Ph(s, RS) (Penalty formulation)
Eh(s) + Lh(s, RS) (Augmented Lagrangian formulation)

, (12)

where we have used eq. (7) to introduce the vector s ≜ (s1, s2, ..., sm) and the functions Eh(s) ≜ E(x + uh),
Ph(s, RS) ≜ P(uh, RS), and Lh(s, RS) ≜ L(uh, RS). The lower-level problem is a minimization problem in the
vector variable s parameterized by RS . The upper-level problem is a minimization problem in the scalar variable
RS , which we solve by using the golden-section search. See, for instance, Luenberger and Ye [7].

We set the initial search interval of the golden-section search to be [0.9Ri, 0.02Re]. At each iteration of
this method, we solve the lower-level minimization problem for a given RS using a standard numerical procedure,
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which we comment more below. Then, we evaluate the corresponding F(s, RS) and proceed to the next iteration,
where the search interval is reduced. We repeat these iterations until the search interval is smaller than a certain
tolerance, which is equal to 10−6 in this work.

For both penalty and augmented Lagrangian formulations, we use ν inf = 1000 as it was done by Aguiar and
Rocha [4]. For the penalty formulation, we use increasingly larger values of δ. Starting from δ = δ0 and s = s0,
we solve the lower-level problem using a standard Newton-Raphson method with a unidirectional search. Then,
we increase δ and solve again the lower-level problem starting from the solution of the previous one. We repeat
this process until δ = δpf , where the value of δpf is given below. In this formulation, the numerical approximation
of λ is obtained in a post-processing calculation as λ = −δ c.

For the augmented Lagrangian formulation, we use a constant value δ = δaf , where the value of δaf is given
below. In addition, we introduce a finite element approximation of λ given by

λh =

mλ∑
i=1

li wi , (13)

where li ∈ R, i = 1, 2, 3, ...,mλ, is a degree of freedom, mλ is the number of degrees of freedom associated
with the approximation of λ, and wi is a shape function of the finite element approximation. In this work, λh is
constant by parts, so mλ coincides with the number of mesh elements used in the discretization. Starting from
l1 = l2 = ... = lmλ

= 0 and s = s0, we solve the lower-level minimization problem using a standard Newton-
Raphson method with a unidirectional search. Then, we update li, i = 1, 2, 3, ...,mλ, as explained below and solve
again the lower-level problem starting from the solution of the previous problem. We repeat this process until the
update of λh is lower than a certain tolerance. We update li, i = 1, 2, 3, ...,mλ, using the following recursive
formula.

l
(k+1)
i = l

(k)
i − δ c

(k)
i , (14)

where the superscript denotes an iteration and c
(k)
i is equal to c evaluated at the center of the i-th mesh element in

the k-th iteration. For more details on the Newton-Raphson method, the unidirectional search, and the augmented
Lagrangian method mentioned above, see, for instance, Luenberger and Ye [7].

We now consider the engineering constants E1 = 15, E2 = E3 = 1, v12 = v13 = 0.25, v23 = 0.5, where
E and v denote the Young’s modulus and the Poisson ratio, respectively, and the subscripts 1, 2, and 3 denote the
radial, tangential, and axial directions, respectively. The values of E1, E2, and E3 multiplied by a factor of 1010

are, approximately, the constants of a unidirectional carbon/epoxy composite [3]. These engineering constants
correspond to the elasticity constants

c11 = 900/59 ≈ 15.2542 , c12 = 30/59 ≈ 0.508475 , c22 = 239/177 ≈ 1.35028 . (15)

To obtain the numerical results presented below, we use non-uniform meshes parameterized by q ∈ N and
composed of N = 24× 2q elements distributed in three intervals: 15× 2q elements in Ri < R < 0.1Re, 5× 2q

elements in 0.1Re < R < 0.5Re, and 4× 2q elements in 0.5Re < R < Re. This mesh is similar to the meshes
used by Aguiar et al. [8] in computational studies of the disk problem in the context of the linear elasticity theory.
The initial guess used in the numerical procedure corresponds to the undistorted reference configuration, which
implies that s0 = 0. In addition, we consider Ri = 0.001, Re = 1, p = 0.1, and ε = 0.1.

In Fig. 1, we show ur (top left), ν (top right), detF (bottom left), and λ (bottom right) versus the radius R
in a neighborhood of the inner surface of the disk. The colored lines correspond to approximate solutions of the
nonlinear disk problem using the augmented Lagrangian formulation with increasing mesh refinements, δaf = 104,
and d = 1. Recall from above that d is the degree of the Lagrange finite elements used in the approximation
of the displacement field. These colored lines are almost indistinguishable, which indicates the convergence of
the numerical results. Using d = 2, δ0 = 103, and δpf = 105, the numerical results obtained with the penalty
formulation are very similar to those shown in Fig. 1. Later in this section, we present a comparison of results
obtained with both formulations. The black solid lines correspond to the exact solution of the disk problem in the
context of the linear elasticity theory with the imposition of the local injectivity constraint, which is given by the
equations (44)-(47) of Aguiar et al. [8].

We see from the graphs of detF and λ in Fig. 1 that, in both linear and nonlinear cases, the local injectivity
constraint is active in the intervals (Ri, R

lin
a ) and (Ri, Ra), respectively, where Rlin

a ≈ 0.002 and Ra ≈ 0.010.
In addition, in (Ri, R

lin
a ), ur and, consequently, ν of both solutions coincide. This is expected because the active

region includes the inner surface of the disk in both linear and nonlinear cases; therefore, in both cases, the radial
displacement ur = r −R must satisfy the ordinary differential equation detF = ν τ = r′ r/R = ε in B= and the
boundary condition r(Ri) = Ri, from which we obtain r(R) =

√
(R2 −R2

i ) ε+R2
i in B=.

Furthermore, we see from Fig. 1 that, even though the radial displacement ur is continuous, the radial stretch
ν has a jump discontinuity at the interface between B= and B>, which corresponds to R = RS . We have verified

CILAMCE-2023
Proceedings of the XLIV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Porto, Portugal, November 13-16, 2023



A. Aguiar, L. Rocha

q = 4 q = 6 q = 8 q = 10 Linear elasticity theory

Figure 1. Radial displacement ur, radial stretch ν, determinant of the deformation gradient detF, and Lagrange
multiplier λ versus the radius R.

that such a jump occurs for p > p̄ = 0.0108. A similar discontinuity was observed by Aguiar and Rocha [4] and
is associated with the non-monotonicity of Prr, given by eq. (8), with respect to ν. In addition, in B=, the disk
is considerably more deformed than in B>. For radially fiber-reinforced materials, this could indicate that p̄ is a
critical value of pressure above which, near the inner surface of the disk, the fibers fail by kinking since the surface
of discontinuity of the deformation gradient is normal to the fiber direction [9].

We now focus on the comparison between the penalty and augmented Lagrangian formulations. In particular,
on how accurately the constraint detF = ε in B= is imposed when we use different meshes and finite elements, that
is, different values of q and d, respectively. We also study the influence of δpf and δaf on the penalty and augmented
Lagrangian formulations, respectively. The results presented below were obtained using the same pressure, disk
geometry, and material parameters used in the previous numerical example. In addition, all the results concerning
the penalty formulation were obtained using δ0 = 103.

We define the error e ≜
√∫

B=
(detF− ε)2 dx and, in Fig. 2, we plot log10 e versus log10 δ

p
f and log10 δ

a
f .

The two graphs on the top part of the figure refer to results obtained with d = 1 and increasing values of q. The
two graphs on the bottom part refer to results obtained with q = 6 and increasing values of d. The graphs on the
left and right sides refer to, respectively, the penalty and the augmented Lagrangian formulations.

We see from the top left graph of Fig. 2 that, in the penalty formulation, e decreases as δpf increases until it
reaches a critical value that reduces as q increases. From the top right graph, we see that e decreases as q increases,
independently of the value of δaf .

Similarly, we see from the bottom left graph of Fig. 2 that, in the penalty formulation, the error e decreases
as δpf increases until it reaches a critical value that reduces as d increases. From the bottom right graph, we see that
the augmented Lagrangian formulation has a similar behavior. However, in this case, the critical value is reached
with lower values of δaf .

For large enough penalty parameters, we see from Fig. 2 that, in both formulations, an increase of two units
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in q, which approximately quadruplicates the number of degrees of freedom, reduces log10 e in approximately 0.6
unit. On the other hand, an increase of one unit in d, which less than duplicates the number of degrees of freedom,
reduces log10 e in approximately 2 units. Therefore, our results indicate that, to reduce the error e on the imposition
of the injectivity constraint in B=, it is preferable to increase the degree of the finite element approximation than
to increase the number of mesh elements.

q = 4 d = 1 q = 6 d = 1 q = 8 d = 1 q = 10 d = 1

d = 1 q = 6 d = 2 q = 6 d = 3 q = 6

Figure 2. Base 10 logarithm of the error e versus base 10 logarithm of the final penalty parameters δpf and δaf .

4 Conclusions

We have considered the problem of an elastic annular disk in equilibrium in the absence of body force. The
disk is fixed on its inner surface and compressed by a uniform pressure on its outer surface. The disk is made of
a cylindrically orthotropic material with a nonlinear constitutive response that is stiffer in the radial direction than
in the tangential direction. Aguiar and Rocha [4] have found that the solution of this problem predicts material
overlapping if the pressure is large enough. To avoid this physically unacceptable behavior, we have formulated the
disk problem as a minimization problem of the total potential energy functional with the local injectivity constraint.
We have implemented the penalty and the augmented Lagrangian formulations, which have yielded convergent
numerical results that do not predict material overlapping. Our results indicate that, to impose the local injectivity
constraint accurately, it is preferable to increase the degree of the finite element approximation than to increase
the number of finite elements in the mesh. In addition, the solution of the nonlinear disk problem corresponds to
a deformation field that has a jump discontinuity in the radial stretch, which delimits a region where the disk is
considerably more deformed. For fiber-reinforced materials, this could indicate a region where the fibers failed.
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