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Abstract. Topology optimization of structures has been a topic great interest and intense research in the last
decades. In simple terms, topology optimization aims at finding a material distribution within a given design
domain which minimizes a shape functional. Typically, most works in this area mainly focus on considering the
problem of obtaining optimal topologies composed of a single material. However, recent efforts and developments
allowed for the incorporation of more than one material in the optimization problem. More specifically, we adopt
here a topology optimization algorithm based on the topological derivative together with a domain representation
on a fixed mesh with the help of multiple level-set functions. The topological derivative measures the sensitivity
of a given shape functional with respect to an infinitesimal singular domain perturbation, such as holes, inclusions,
source terms or cracks. In this work, the topological derivative is used in the optimization procedure as a steepest
descent direction, like in any method based on the gradient of the cost functional. In addition, adaptive mesh
refinement procedures are performed as a part of the optimization scheme for an enhanced boundary resolution of
the final topology. Finally, numerical experiments of classical benchmarks in structural optimization are performed
into two and three spaces dimensions to show the effectiveness of the proposed approach.
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1 Introduction

Structural optimization has been a topic of great interest for over 100 years. The recent developments in
this area, specially in the past two decades, have qualified it as important tool in the design process. In simple
terms, it allows the designer to obtain optimized structures with reduced human intervention. One interesting as-
pect regarding the recent and increasing developments in multi-material topology optimization, is the fact that the
resulting optimal topologies can be perfectly constructed with additive manufacturing techniques. Therefore, the
development of new design strategies, such as level-set based approaches for instance, is crucial to keep pace with
the technological advances. The level set method was first introduced by [1] for moving interface problems. Its
main feature lies precisely in the ability to track and smoothly represent the evolution of interface boundaries on a
fixed mesh, which ultimately leads to fast numerical algorithms [2]. Thus, level-set techniques have been success-
fully applied for solving topology optimization problems as an alternative approach to the traditional density-based
methods. In order to deal with the multi-material topology optimization problem, several variations of the level-set
method have been proposed, with two approaches standing out form the others [3]. The first one, called Color
level-set, was proposed by Wang & Wang [4] and it uses n level-set functions to represent 2n material regions. The
main issue of this approach is the interpretation of redundant material regions that appear whenever the number of
material regions to be represented is not exactly 2n, making the analysis much more involved. An application of
this strategy in the context of multi-phase structural optimization can be found [5]. The second approach, called
Multi-Material Level-Set Method (MM-LS), was proposed by Wang et al. in [6] and it consists in representing n+1
material plus void regions by employing a combinatorial scheme of n level-set functions. It is important to empha-
size that this approach ensures no overlapping regions and naturally avoids the problem of redundant regions in the
project domain. The recent work by Romero & Giusti [3] uses the MM-LS scheme together with the topological
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derivative method in the context of multi-material topology optimization in many different applications.
In the present work, we adapt the topology optimization algorithm based on the topological derivative method

together with a LL-MS proposed in [3] to use adaptive instead of structured mesh refinement and also extend it
to three spatial dimensions. The work is organized as follows: In Section 2 a brief explanation of the MM-LS
is provided. The problem formulation is stated in Section 3. The topological derivative method is introduced
in Section 4 and in Section 5 the topology optimization algorithm is explained. Finally, two numerical results
showing the effectiveness of the proposed approach are presented in Section 6.

2 Multi-material level-set representation

Consider a geometrical domain Ω ⊂ Rd, with d = 2, 3 which can be decomposed into n + 1 regions such
that

Ω =

n⋃
i=0

Ωi and Ωi ∩ Ωj = ∅ ∀i ̸= j , (1)

where Ωi is the geometrical domain assigned to the i-th material. The region Ω0 represents the void region whereas
the last n regions are assigned to solid materials. Now, let Ψ(x) = [Ψ1(x),Ψ2(x), . . . ,Ψn(x)]

⊤ be a vector of
n level-set functions. Then, let us define the heaviside vector H(Ψ) = [H(Ψ1), H(Ψ2), . . . ,H(Ψn)]

⊤, with its
components given by

H(Ψi(x)) =

 1, if Ψi(x) ≤ 0

0, if Ψi(x) > 0 .
(2)

From the above definitions, the MM-LS approach proposed by Wang [6] establishes a vector of characteristic
functions χ = [χ0

n, χ
1
n, . . . , χ

n
n]

⊤ built in combinatory fashion, namely:

χ0
n = (1−H(Ψ1)) ,

χ1
n = (1−H(Ψ2))

1∏
i=1

H(Ψi) ,

χ2
n = (1−H(Ψ3))

2∏
i=1

H(Ψi) ,

... (3)

χk
n = (1−H(Ψk+1))

k∏
i=1

H(Ψi) ,

...

χn−1
n = (1−H(Ψn))

n−1∏
i=1

H(Ψi) .

Note that, each component of the vector χ indicates the presence of a specific material at the point x ∈ Ω. Thus,
the material regions are represented as

χi
n(x) =

 1, if x ∈ Ωi

0, if x /∈ Ωi .
(4)

In addition, only n level set functions are necessary to represent the n material regions plus the void region. For a
more detailed description of the MM-LS approach, see [6].

3 Problem formulation

Let us consider an open and bounded domain Ω ⊂ Rd, with Lipschitz boundary denoted as Γ := ∂Ω.
The boundary Γ is the union of two given non-overlapping subsets ΓD and ΓN , that is ∂Γ = ΓD ∪ ΓN and
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Figure 1. The elasticity problem.

ΓD ∩ ΓN = ∅. On ΓD the displacements are prescribed, whereas the boundary tractions are prescribed on ΓN .
See Figure 1.

In this work, we are interested in solving the classical compliance topology optimization problem of structures
subject to an external load under volume constraint as stated in Section 5 in the book by [7]. Such a problem, in
our context, consists in finding the n + 1 material regions Ωi ⊂ Ω, i = 0, 1, . . . , n, that solve the following
minimization problem:

Minimize
Ω0,Ω1,...,Ωn⊂Ω

F(u) := C(u) +
n∑

i=0

βi|Ωi| . (5)

where βi > 0 is a fixed multiplier used to impose a volume constraint for the i-th material region of the form
|Ωi| ≤Mi, with Mi > 0, and C(u) is the structural compliance, namely

C(u) =
∫
ΓN

q · u , (6)

with q the prescribed traction on ΓN and u the solution to:∫
Ω

σ(u) · (∇η)s =
∫
ΓN

q · η , ∀η ∈ V , (7)

where V = U := {φ ∈ H1(D;Rd) : φ|ΓD
= 0}. The Cauchy stress tensor σ(u) is given by

σ(u) = C(χ)(∇u)s , (8)

with the constitutive tensor

C(χ) =
n∑

i=0

χi
nCi; , (9)

where Ci is the fourth order constitutive tensor of the i-th material. For an isotropic and homogeneous material, it
may be written as follows

Ci = 2µiI+ λi(I⊗ I) , (10)

where I and I are the second- and fourth-order identity tensors, respectively, µi and λi are the Lamé’s coefficients
of the i-th material. In particular, in the case of plane stress assumptions, we have the following coefficients

µi =
Ei

2(1 + νi)
and λi =

νiEi

1− ν2i
, (11)

whereas in the case of plane strain state, they are

µi =
Ei

2(1 + νi)
and λ =

νiEi

(1 + νi)(1− 2νi)
, (12)

where Ei and νi are, respectively, the Young’s modulus the Poisson’s ratio of the i− th material. Finally, the strain
tensor is given by

(∇u)s = 1

2

(
∇u+ (∇u)⊤

)
, (13)
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4 The topological derivative method

The topological derivative is defined as the first term of the asymptotic expansion of a given shape functional
with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions,
source-terms and cracks. In other words, the topological derivative measures the sensitivity of the associated shape
functional with respect to the nucleation of a singular domain perturbation. This concept can naturally be used as a
steepest-descent direction in an optimization process like in any method based on the gradient of the cost functional.
Thus, this relatively new concept has applications in many different fields such as shape and topology optimization,
inverse problems, imaging processing, multi-scale material design, and mechanical modeling including damage
and fracture evolution phenomena [7].

4.1 The topological derivative concept and topological gradients

Let us consider an open and bounded domain Ω ⊂ Rd, which is subject to a non-smooth perturbation confined
in a small region Bε(x̂) of size ε, where x̂ is an arbitrary point of Ω. Then, by introducing the characteristic
function χ associated with the unperturbed domain, we may also define a characteristic function associated with
the topologically perturbed domain χε. In the case of a perforation, for example, χε(x̂) = χ−(1−γ)χBε(x̂)

, where
γ ∈ R+ is the constrast parameter in the material property. Next, we assume that a given functional F(χε(x̂)),
associated with the topologically perturbed domain, admits a topological asymptotic expansion of the form

F(uε, χε(x̂)) = F(u, χ) + f(ε)DT (F(u, χ), x̂) + o(f(ε)) , (14)

where F(u, χ) is the functional associated with the unperturbed domain, f(ε) is a positive function such that
f(ε) → 0 when ε → 0, and o(f(ε)) is the remainder term, that is, o(f(ε))/f(ε) → 0 when ε → 0. The
function x̂ 7→ DT (F(u, χ), x̂) is called the topological derivative of F(u, χ) at x̂. Therefore, the product
f(ε)DT (F(u, χ), x̂) represents a first order correction over F(u, χ) to approximate F(uε, χε(x̂)). In addition,
after rearranging (14), we have

F(uε, χε(x̂))−F(u, χ)
f(ε)

= DTF +
o(f(ε))

f(ε)
, (15)

where we have replaced DT (F(u, χ), x̂) by DTF for the sake of simplicity. The limit passage ε→ 0 in the above
expression leads to the general definition for the topological derivative, namely

DT (x̂) := lim
ε→0

F(uε, χε(x̂))−F(u, χ)
f(ε)

. (16)

Note that, by considering only one material and void, there exists a sensitivity to a topological perturbation
due to an introduction of a hole in the material region and another one due to the introduction of a reinforcement
in the void region. Therefore, in this case the topological derivative is defined by pairs, in order to consider the
two sensitivities above mentioned. Since both sensitivities are measured in the entire domain, the sensitivity due
to an introduction of a hole in the void region will be zero. Analogously, the sensitivity due to a reinforcement of
the same material in the material region will also be zero. In this sense, the following topological gradient g(x) is
defined in such a way that we have a single that measures the sensitivity of F with respect to an oriented shift to
the topology:

g(x) :=

 −D−
T F , if x ∈ Ωmat

D+
T F , if x ∈ Ωvoid .

(17)

In addition, we may even write the topological gradient g in the form

g(x) = −χmatD
−
T F + (1− χmat)D

+
T F , (18)

where D−
T and D−

T are the topological derivatives due to the introduction of a hole in the material region and
due to the introduction of a solid inclusion in the void region, respectively, and χmat is the characteristic function
associated with the material region Ωmat.

Now, according to the domain representation method presented in Section 2, the topological gradient can be
constructed as [8]

gk(x) = −
n∑

i=k

χi
nDTF i→(k−1) + χk−1

n

n∑
i=k

∂χi
n

∂χk
n

DTF (k−1)→i , (19)
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where gk(x) is the k-th component of the topological gradient vector

g(x) = [g1(x), g2(x), . . . , gk(x), . . . , gn(x)]
⊤ . (20)

The term DTF i→j represents the sensitivity of the functional due to the introduction of a singular perturbation
made of material j on the base material i at the point x̂. The topological derivative of the shape functional defined
in (5) is

Di→j
T F(x) = Di→j

T C(x) + βiD
i→j
T |Ω|. (21)

with the topological derivative of the compliance shape functional given by

Di→j
T C(x) = −Pi→j

γ σ(u(x)) · ∇(u)s , (22)

where the polarization tensor Pγ , for ν0 = ν1 = · · · = νn, is given by the following fourth-order isotropic tensor

Pi→k
γ = − 1− γi→k

1 + γi→kα2

(
(1 + α2)I+

1

2
(α1 − α2)

1− γi→k

1 + γi→kα2
(I⊗ I)

)
for d = 2 , (23)

with
α1 =

λi + µi

µi
and α2 =

λi + 3µi

λi + µi
. (24)

Pi→k
γ = −(1− γi→k)[3α2I+ (α1 − α2)I⊗ I] for d = 3 , (25)

with with the constants α1 and α2 given by

α1 =
1− νi

3(1− νi)− (1 + νi)(1− γi→k)
and α2 =

5(1− νi)

15(1− νi)− (8− 10νi)(1− γi→k)
. (26)

Finally, the topological derivative associated with the volume constraint is trivially obtained and given by

Di→j
T |Ωi|(x) =

 −1, if x ∈ Ωi ,

+1, if x /∈ Ωi ,
(27)

More details about the derivation of this result can be found in [9, 10].

5 Topology optimization algorithm

The main idea of the topology optimization algorithm used in the present work basically lies in achieving a
local optimality condition for the minimization problem (5), given in terms of the topological derivative and the
MM-LS introduced in the earlier sections of this work. Whenever the topological gradient g becomes parallel to
the vector level-set Ψ in a L2(Ω) sense configures a first order optimality criterion for the topology optimization
problem, which can be stated as [2, 3]

θ := arccos

[ ⟨g,Ψ⟩L2(D)

∥g∥L2(D)∥Ψ∥L2(D)

]
= 0 , (28)

Now, with all the elements introduced so far, we may provide a brief explanation of the algorithm is. We
start by choosing an initial level-set vector function Ψ0. In a generic iteration m, we compute the function gm

associated with the level-set function Ψm. Then, the new level-set function Ψm+1 is updated according to the
following linear combination of the functions gm and Ψm

Ψm+1 =
1

sinθm

[
sin((1− w)θm)Ψm + sin(wθm)

gm

∥gm∥L2(D)

]
with k = 1, 2, . . . , n . (29)

where θm is the angle between gm and Ψm, and w is a step size determined by a linear search performed in order
to decrease the value of the objective function F associated with Ψm. The step size w is initially chosen as 1 and
decreases accordingly to w ← w/2 until the condition Fm+1 < Fm is fulfilled. The process ends whenever the
condition θm ≤ ϵθ is satisfied at some iteration, with ϵθ a given small numerical tolerance. If at some iteration
the line-search step size w is found to be smaller than a given numerical tolerance ϵw > 0 and the local optimality
condition is not satisfied, then an adaptive mesh refinement is performed and the iterative process is continued. In
all numerical experiments, we consider ϵθ = 1◦ and ϵw = 1.0× 10−3.
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6 Numerical results

In this section, we present one classical example in structural optimization of a cantilever beam in two space
dimensions to be optimized with two material regions. In addition, we propose a benchmark example in three
spatial dimensions also to be optimized considering two material regions. In both examples, the following material
properties were considered: E1 = 1, E2 = E1/2, E0 = E1 × 10−3 and ν0 = ν1 = ν2 = 1/3. The subscripts 1, 2
refer to the material region whereas the subscript 0 refers to the void region. In addition, the material regions 1 and
2 are, respectively, represented by red and blue colors.

6.1 2D example

We consider here the classical example of a cantilever beam of dimension 2 × 1 m2 under plane stress state
and subject to a loading force q = (0.0,−1.0) at the center of the right side. The final topology was obtained
after 43 iterations and one adaptive mesh refinement with the optimality condition fulfilled, namely θ43 = 0.94.
In addition, a final volume fraction |Ω1| ≈ 20% and |Ω2| ≈ 35% for the material regions was obtained for the
optimal topology. The project domain and boundary conditions, as well as the final topology are shown in Figure
2.

q

Ω

Figure 2. Example 1: Initial domain and boundary conditions and final result.

6.2 3D example

Now, let us consider a cube of dimensions 5× 5× 5 m3 with hinge supports at the bottom. The cube is also
subject to a surface traction q = (0.0, 0.0,−1.0) distributed in a small square region of dimensions 0.5 × 0.5 m2

at the center of the top face. The hinge supports are also squares of dimension 0.25× 0.25 m2 with their centers at
0.375 m from the edges of the cube, as shown in Figure 3. The final topology was obtained after 70 iterations and

Figure 3. Example 2: Initial domain and boundary conditions, perspective and diagonal cut views of the final
topology.

three adaptive mesh refinements. The optimality condition was fulfilled at the end of the iterative process, namely
θ70 = 0.88◦. A final volume fraction |Ω1| ≈ 4.5% and |Ω2| ≈ 4.0% for the material regions was obtained for the
optimal topology. A perspective view, as well as diagonal cut of the optimal topologies are shown in Figure 3.
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7 Conclusions

This work deals with structural optimization using the topological derivative method and MM-LS for the
representation of the material regions. The main contributions of this work is the use of adaptive mesh refinement
and extending an existing topologcial derivative-based approach to the three-dimensional scenario. The use of
adaptive mesh refinement in the process has proved to be very effective in enhancing the boundary representation
of the material regions in the final topology.
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