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Abstract. We present a phenomenological large strain thermo-elasto-viscoplastic constitutive model using the
multiplicative decomposition of the thermal, elastic and plastic deformation gradients. The laws of thermodynam-
ics are used as basis to formulate the model and to obtain the heat equation, including the dissipation from the
viscoplastic component. An isotropic expansion law in exponential form is used for the thermal part of the defor-
mation, and a neo-Hookean model is used for the elastic part. Plasticity is considered based on the von Mises yield
criterion with Perzyna model to account for the viscous behavior of the plastic component, Norton’s law for the
overstress function, and the Armstrong-Frederick model of kinematic hardening. For the numerical integration of
the evolution laws, we employ an exponential map method that ensures the property of plastic incompressibility.
The resulting constitutive model is applied in a position-based Finite Element framework to solve the mechanical
problem. The thermal problem is also solved by the Finite Element Method, using temperatures as nodal parame-
ters, and the thermo-mechanical coupling is performed as an iterative partitioned method. Finally, a representative
numerical example is selected to show the characteristics of the constitutive model, with special focus on the heat
generated due to plastic dissipation over different strain and stress rates.
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1 Introduction

The study of elasto-viscoplastic materials finds several applications in engineering, including, for instance,
metal forming processes. In order to accurately model the mechanical behavior of these materials, it is important
taking into account the energy dissipation and heat generated by their inelastic mechanisms, leading to thermally-
coupled models. In this sense, we propose a large strain thermo-elasto-viscoplastic model using the multiplicative
decomposition concept, and following a thermodynamics basis similar to works such as Carvalho et al. [1], Lion
[2], Dettmer and Reese [3], Vujošević and Lubarda [4]. The model is then implemented into a numerical framework
using the Finite Element Method [5, 6], and applied to a representative numerical example in order to show its
constitutive properties and dissipative behavior.

2 Kinematics basis

Let us denote by F the deformation gradient from the initial to the deformed configuration of a body, by
C = FTF the right Cauchy-Green tensor, and by J = detF the Jacobian. In order to account for large strain
problems, we employ in this work the multiplicative decomposition of the deformation gradient. Similarly to
Vujošević and Lubarda [4], we write F = FmFt, where Fm and Ft are the mechanical and thermal deformation
gradients, respectively. Considering a thermally isotropic material, we have Ft = λtI, where I is the identity
tensor, and λt is a scalar representing the thermal stretch. For the mechanical part, we write Fm = FeFp, where
Fe and Fp are the elastic and plastic deformation gradients, respectively. Finally, following Lion [2], the plastic
part can be written as Fp = FpeFpi , where Fpe and Fpi are the plastic-elastic and plastic-inelastic deformation
gradients, respectively. To summarize:
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F = λtFm = λtFeFp = λtFeFpeFpi . (1)

For each given component of the deformation gradient, we can define respective components of the right Cauchy-
Green tensor and Jacobian, e.g. Ce = FT

e Fe, Cpe
= FT

pe
Fpe

, Je = detFe and Jpe
= detFpe

.

3 Thermo-elasto-viscoplastic model

We base our model on the first and second laws of thermodynamics, written in a local Lagrangian form as

ψ̇ + T η̇ + Ṫ η −R =
1

2
S : Ċ−∇0 · q0, and (2)

dint =
1

2
S : Ċ− ψ̇ − Ṫ η − 1

T
q0 ·∇0T ≥ 0. (3)

where ψ, η, R and dint are the helmholtz free energy, entropy, internal heat, and dissipation rate, respectively, all
defined per unit volume at the initial configuration, T the temperature, S the second Piola-Kirchhoff stress, q0 the
heat flux in the initial configuration, and ∇0 the gradient in the initial configuration.

Following Vujošević and Lubarda [4], the helmholtz free energy can be decomposed as ψ = λ3tψm + ψt,
where ψm is the mechanical part, written in terms of the mechanical strain, and ψt is the thermal part, written
in terms of the temperature. Furthermore, for the present elasto-viscoplastic model, the mechanical part can be
decomposed as ψm = ψe +ψkin

pe
, where ψe is the elastic part, written in terms of the elastic strain, and ψkin

pe
is the

kinematic hardening part, written in terms of the plastic-elastic strain. Therefore, the helmholtz free energy can be
expressed as

ψ(Ce,Cpe , T ) = λ3tψm(Ce,Cpe) + ψt(T ) = λ3tψe(Ce) + λ3tψ
kin
pe

(Cpe) + ψt(T ) (4)

By applying eq. (4) into ineq. (3) and performing further algebraic manipulations using the multiplicative
decomposition (section 2), we can express the second law of thermodynamics as

dint =
1

2

(
S− λtF

−1
p SeF

−T
p

)
: Ċ+ λ3tΣ : Łp + λ3tMpe

: Łpi

−
(
η +

∂ψt

∂T
+ 3λ2tψm

∂λt
∂T

− λ2t trMe
∂λt
∂T

)
Ṫ − 1

T
q0 ·∇0T ≥ 0,

(5)

where Łp = ḞpF
−1
p and Łpi = ḞpiF

−1
pi

are the plastic and plastic-inelastic velocity gradients, respectively,
Se = 2∂ψe/∂Ce is the elastic second Piola-Kirchhoff stress, Σ = Me − FpeSpeF

T
pe

is called relative stress,
Spe

= 2∂ψkin
pe

/∂Cpe
is the plastic-elastic second Piola-Kirchhoff stress, and Me = CeSe, Mpe

= Cpe
Spe

are called Mandel stresses. From the arbitrarity of Ċ and Ṫ , ineq. (5) leads to the following constitutive equations
for the second Piola-Kirchhoff stress and the entropy:

S = λtF
−1
p SeF

−T
p , and (6)

η = −∂ψt

∂T
+ λ2t (trMe − 3ψm)

∂λt
∂T

. (7)

Additionally, following a Perzyna-like model [7] and an Armstrong-Frederick kinematic hardening [3], in order to
guarantee the non-negativeness of the dissipation rate, the following evolution laws are applied:

Łp =
⟨Θ⟩
ηp

ΣD

∥ΣD∥
⇒ Ḟp =

⟨Θ⟩
ηp

ΣD

∥ΣD∥
Fp, (8)

Łpi
=

⟨Θ⟩
ηp

b

c
MD

pe
⇒ Ḟpi

=
⟨Θ⟩
ηp

b

c
MD

pe
Fpi

, (9)
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where ηp is the plastic viscosity parameter, b and c are Armstrong-Frederick parameters (with c representing the
kinematic hardening stiffness), (·)D denotes the deviatoric tensor, ∥ · ∥ the tensor norm, ⟨·⟩ the Macauley brackets,
and Θ is the overstress. The latter is defined in this work by Norton’s rule [8]: Θ = (Φ/αp)

m, where αp and m are
given parameters, and Φ is the yield function, considered here to be of von Mises type: Φ = ∥ΣD∥ −

√
2/3 σY ,

with σY being the yield stress.
By applying the constitutive relations and evolution laws above into the first and second laws of thermody-

namics, we can express them as

dm +R− cpṪ −∇0 · q0 = 0, and (10)

dint = dm − 1

T
q0 ·∇0T ≥ 0, (11)

where cp = T ∂η/∂T is the specific heat capacity of the material (taken as a constant parameter in this work), and
dm is the mechanical part of the dissipation rate, in this case defined by the expression

dm = λ3t
⟨Θ⟩
ηp

(
∥ΣD∥+ b

c
∥MD

pe
∥2
)
. (12)

Equation (10) is also known as heat transfer equation, written in local Lagrangian form. As can be seen, the
mechanical dissipation rate plays the same role of the internal heat, and, being always non-negative, it can only
cause increases in temperature. The first law of thermodynamics also leads to the following relation:

1

2
S : Ċ = ψ̇ + dm + Ṫ η, (13)

that is, the internal work rate can be decomposed into three parts: the helmholtz free energy rate, the mechanical
dissipation rate, and an entropy term.

4 Numerical implementation

The present constitutive model is applied into a position-based Finite Element framework [5, 6] for solving
mechanical solid problems. To solve the heat transfer problem, we apply a temperature-based Finite Element
method, using Fourier’s law, which is written in Lagrangian form as q0 = −kJC−1∇0T , where k is the material
conductivity parameter. For the thermal expansion, we apply the exponential law λt = eα(T−T0), where α is the
thermal expansion coefficient and T0 the reference temperature. The thermo-mechanical coupling is performed
via an iterative partitioned method. For the mechanical parts of the helmholtz energy, we apply the following
neo-Hookean laws:

ψe =
Λ

2
(ln Je)

2 +G (trCe − 3− ln Je) , and (14)

ψkin
pe

=
c

2
(trCpe − 3− ln Jpe) . (15)

where Λ and G are Lamé parameters, and c is the kinematic hardening stiffness. Finally, to numerically integrate
the plastic and kinematic hardening evolution laws – eqs. (8) and (9) –, the exponential map method is used, which
preserves the property of inelastic incompressibility [1].

4.1 Numerical example: partially loaded cube

To show the characteristics of the present formulation, we propose a partially loaded cube example, with
geometry, mesh and material parameters shown in Fig. 1. This examples consists of monotonic loading and
unloading stages, considering five different load rates: 75 · 10−2, 75 · 10−1, 75 · 100, 75 · 101 and 75 · 102
MPa/s. Furthermore, two different values of thermal expansion coefficients are considered: α = 0.003◦C−1 and
α = 0.01◦C−1. The cube is treated as thermally sealed, that is, the generated heat does not dissolve into the
environment, and the only heat source is the one generated by mechanical dissipation.
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Figure 1. Geometry and parameters for the partially loaded cube example

In Fig. 2, we show the graphs of displacement over time for each of the different load rates and thermal
expansion coefficients. As can be observed, the displacements are slightly smaller for the case with α = 0.01◦C−1,
and the effect of plastification is more significant as the loads rate decreases, tending to an hyperelastic behavior
for higher load rate values. Furthermore, based on what is known of Perzyna-like models, we can also assume that
the results for the lower load rates tend to a pure elasto-plastic model.
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Figure 2. Displacement by force graphs for each analyzed case

In Fig. 3, we show a simple analysis of work rates for the case with α = 0.003 ◦C−1. The total external
forces work rate is calculated by the expression

∫
pẏ dΓp, where p is the applied load in the boundary Γp, and ẏ is

the displacement rate (velocity) of the points where the load is applied. Furthermore, we plot the values over time
for each of the components of eq. (13), integrated over the initial volume, that is: total helmholtz rate (computed by
a simple backward Euler approach), total mechanical dissipation rate, and an entropy term (

∫
ηṪ dV0). By adding

all these components to the total external forces work rate, we have the total mechanical work rate.
Proving the consistency of the present model, we note that the total mechanical work rate is approximately

null in all cases, as expected from a closed system. From the presented graphs, it is also possible to have an idea
of the dissipation magnitude for each case in comparison with the helmholtz rate. As can be seen, for higher load
rates, the maximum mechanical dissipation rate becomes negligible relative to the other components, despite also
increasing.

To allow a better visualization of the total mechanical dissipation rates (dm) for each case, their graphs over
time are shown individually in Fig. 4. Furthermore, in Fig. 5, we display the graphs of total mechanical dissipation
for each case, which are calculated by integrating its rate over time (using a simple algorithm to get areas below
the curve). We can observe that, although the total dissipation rate increases with the load rate, the total dissipation
decreases. That is because the cases with higher load rates develop within a smaller time period, therefore reducing
the integral over time value. This is expected, since the cases with lowest load rates are more influenced by the
plasticity effect, which causes the dissipation.
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Figure 3. Work rates for the case with α = 0.003 ◦C−1
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Figure 4. Total mechanical dissipation rate over time for each analyzed case

Finally, we show in Figs. 6 to 8 the deformed configurations of the present problem at the time with maxi-
mum load, particularly for the case with α = 0.003 ◦C−1. Each figure presents a different variable in color map:
vertical components of plastic deformation (Fig. 6), vertical components of Cauchy stress (Fig. 7), and tempera-
tures (Fig. 8). As mentioned before, the plastic deformations increase – and become more localized – as the load
rates decrease. Furthermore, as expected, we can note greater temperature increases for the cases with lower load
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Figure 5. Total mechanical dissipation over time for each analyzed case

rates, despite the lower values of dissipation rates. Particularly for the case with ṗ = 75 · 10−2 MPa/s, we note an
increase of approximately 2.85◦C.

Figure 6. Deformed configurations at maximum load, with component (Ep)22 displayed in color map

Figure 7. Deformed configurations at maximum load, with component σ22 displayed in color map

5 Conclusions

With the presented numerical example, we were able to display the behavior of the proposed thermo-elasto-
viscoplastic model over a wide range of load rates, showing the rate-dependency of variables such as displacements,
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Figure 8. Deformed configurations at maximum load, with temperature displayed in color map

work rates, plastic strain, and total mechanical dissipation. In particular, the analysis of work rates allowed to
prove the consistency of the present formulation, by showing that their components indeed balance each other.
Furthermore, special focus was given to the total mechanical dissipation and its rate, including the influence of
load rate on the temperature increase.
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