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Abstract. We propose a low-order triangular element for Kirchhoff-Love shells by the virtual element method, for
use in the kinematically linear range. The shell domain discretization by flat triangles enables no use of a predefined
mapping approach and curvilinear coordinates system. The displacements and deflection gradient locally defined
at the triangle vertices are the local degrees of freedom, corresponding to the lowest-order cases for conforming
in-plane and out-of-plane displacement approximations. Accordingly, their respective projections from the finite-
dimensional space to linear and quadratic polynomials over the element, supplied by a stabilization, allow defining
a (projected) constant strain and curvature virtual element. Numerical examples including stabilization and element
geometry extension to quadrilateral for cylindrical shells are used as an illustration of our results.

Keywords: Kirchhoff-Love shell, Linear elasticity, Virtual element method.

1 Introduction

Introduced by Da Veiga et al. [1], the virtual element method (VEM) is a method of arbitrarily polytopal
discretization within the Bubnov-Galerkin framework is a generalization of the finite element method. The appli-
cations of VEM to the two dimensional elasticity and plate bending originally introduced by Da Veiga et al. [2]
and Brezzi and Marini [3], have been explored by, e.g. Mengolini et al. [4] and Wriggers et al. [5], respectively.

This work aims to apply the method for Kirchhoff-Love shells restricted to a flat triangle element geometry
and to linearity. By the last, the superposition of effects is allowed. Furthermore, the superposition of membrane
and bending behaviors is achieved by the present formulation mostly by unifying aspects of the aforementioned
works. The restriction is also made to the method order, the lowest one for conforming approximation of each
mentioned behavior. We base on the particular linear case of the shell theory from Pimenta et al. [6] to describe the
continuous problem presented in the 2nd section, followed by the methodology applied to discretize it in the 3rd.
Our framework is mostly based on the one used in Wriggers et al. [5]. The results are presented in the 4th section by
numerical examples including stabilization and element geometry extension to quadrilateral for cylindrical shells.

Unless explicitly indicated, the notations and conventions are Latin and Greek, being regular italic and fraktur
lower case letters for scalars (e.g. p, π and p) and bold for vectors (e.g. p, π and p). Bold upright upper case
letters are for higher-order tensors (e.g. P and Π) and regular calligraphic or double-struck for sets (e.g. P and P).
In particular, the null vector is 0. Regular italic Latin and Greek lower case indices are from {1, 2, 3} and {1, 2},
respectively, with Einstein summation convention except for τ and ν. Only right-handed rectangular systems of
axes are used.

2 The continuous problem

Let the shell reference configuration be V = Ω×H , with middle surface Ω ⊂ R2, sufficiently small constant
thickness h > 0, H = (−h

2 ,
h
2 ) ⊂ R and mid-surface boundary ∂Ω. With a local orthonormal system {er1, er2, er3}
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on the mid-surface, erα tangent and er3 normal to it, the position at reference configuration is

ξ = ζ + ar = ξαe
r
α + ξ3e

r
3. (1)

The kinematics is here given by the displacement and rotation fields

u = z − ζ and θ = −er3 ×∇u3, (2)

with z the position on the mid-surface at current configuration and ∇(•) the gradient operator w.r.t. ζ. It leads to
the current position

x = ζ + u+ ar + θ × ar = z + a, (3)

where the current director may also be given by the linear rotation tensor as a = Qar = (I + Skew(θ))ar, with
Skew(•) as above defined. The deformation of a fiber is given by the deformation gradient

F = x,i ⊗ eri = (z,α + θ,α × ar)⊗ erα + e3 ⊗ er3 = Q + (ηα + κα × ar)⊗ erα, (4)

where we use ei = Qeri and the membrane strain and curvature

ηα = z,α − eα and κα = θ,α. (5)

The linear strain and Cauchy stress tensors for an isotropic linear elastic material are

E =
1

2
(F + FT − 2I) and T = λtr(E)I + 2µE, (6)

with λ = Eν
(1−2ν)(1+ν) and µ = E

2(1+ν) (shear modulus) the Lamé constants, E the Young modulus and ν the
Poisson ratio. With the true stresses ti from T = ti ⊗ eri , acting at planes with normal eri , the internal force and
moment per unit length are given by the cross-sectional resultants

nα =

∫
H

tα dξ3 and mα =

∫
H

ar × tα dξ3. (7)

By the external body force per unit volume f b and surface traction per unit area f t, the external force and moment
per unit area are

n̄ =

∫
H

f b dξ3 + f t and m̄ =

∫
H

ar × f b dξ3 + ar × f t. (8)

We gather some of the above quantities as σα = [nα mα]
T , εα = [ηα κα]

T , q = [n̄ m̄]T and g = [u θ]T .
From the internal and external powers

Pint =

∫
V

T : Ėdξ =

∫
Ω

σα · ε̇α dζ and Pext =

∫
V

f b · ẋ dξ +

∫
Ω

f t · ẋ dζ =

∫
Ω

q · ġ dζ, (9)

and by the permutability of variation with differentiation and integration processes, the internal virtual work results

a(u,v) =

∫
Ω

σα(u) · εα(v) dζ

=−
∫
Ω

(∇ · N(u) · v −∇ · ∇ · M(u3)v3) dζ

+

∫
∂Ω

(N(u) : v ⊗ ν + M(u3) : ∇v3 ⊗ ν −∇ · M(u3) · νv3) dτ.

(10)

In eq. (10) we use v a virtual displacement, N = nα ⊗ erα, M = er3 ×mα ⊗ erα, ∇ · (•) the divergence of (•), ν
the boundary normal and integration by parts twice. The external virtual work is

(q, g(v)) =

∫
Ω

q · g(v) dζ =

∫
Ω

(n̄ · v + m̄ · θ(v3)) dζ. (11)

For instance let the boundary to be clamped. The theorem of virtual work or weak form of the problem, with the
Sobolev spaces H1

0(Ω) = {v ∈ H1(Ω) : v|∂Ω = 0} and H2
0(Ω) = {v ∈ H2(Ω) : v|∂Ω = v,ν |∂Ω = 0}, results{

u ∈ V0 := [H1
0(Ω)]

2 ×H2
0(Ω)

a(u,v) = (q, g(v)),∀v ∈ V0

. (12)
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3 Methodology

Unless explicitly indicated, in the sequel we work only with quantities referred to the local system with no
correspondent superscript and keep the superscript g for quantities referred to the global system. Superscripts h, α
and 3 indicate approximated quantities, in-plane and out-of-plane related quantities, respectively. N (•) stands for
“number of (•)”. The element degrees of freedom (d.o.f.) vector refereed to the global system is d.

Let {er1, er2, er3} be the canonical basis of R3 and R = er,g1 ⊗ er1 + er,g2 ⊗ er2 + er,g3 ⊗ er3 be the local-to-
global transformation matrix. Then, v = RTvg for vg ∈ R3. Now, let {τ g,νg,−er,g3 } be a local orthonormal
system on a polygon edge, with τ g the tangent oriented counterclockwise and νg the outward normal. With
Re = τ g ⊗ er1 + νg ⊗ er2 − er,g3 ⊗ er3 the correspondent local-to-global transformation matrix, θ = RT

e θ
g is the

rotation refereed to this local system, from which follows ∇vg3 = θ2τ
g − θ1ν

g and ∇v3 = RT∇vg3 = θ2τ − θ1ν.
Let E ⊂ R2 be a triangle from a partition T h. We define the local finite-dimensional space and d.o.f. set as

Vh,E := {vh ∈ [H1(E)]2 ×H2(E) : vhα|∂E ∈ C0(∂E),vh|e ∈ [P1(e)]
2 × P3(e), v

h
3,ν |e ∈ P1(e),∀e ⊂ ∂E} (13)

(of dimension dim(Vh,E) ≡ N dof = 15) and

DE := {vh(vi),∇vh3 (vi)}. (14)

Only (boundary) d.o.f. on each element vertex vi are used, i.e. also that vhα and vh3 are harmonic and bi-harmonic
functions inside E, respectively. On each element edge ei we have vhα(vi) and vhα(vi+1) to uniquely determine (up
to) a linear polynomial, thus having C0-continuity of vhα. The same results for vh3,ν(vi) and vh3,ν(vi+1). In addition,
in order to have C1-continuity of vh3 at the vertices, we use vh3 (vi), v

h
3 (vi+1), vh3,τ (vi) and vh3,τ (vi+1) to uniquely

determine (up to) a cubic (Hermitian) polynomial. Noting that v4 = v1, let the interpolation on each edge be
expressed by g = Hd, with g = [vh(ei) vh3,ν(ei)]

T ,

H =


φ1,1 0 0 0 0 φ1,2 0 0 0 0

0 φ2,1 0 0 0 0 φ2,2 0 0 0

0 0 φ3,1 φ̄3,1 0 0 0 φ3,2 φ̄3,2 0

0 0 0 0 φ4,1 0 0 0 0 φ4,2

 , (15)

φj,α, j = 1, . . . , 4 the basis function of the edge j-th d.o.f. at the α-th edge node (φ1,α = φ2,α = φ4,α) and d =
[vh1 (vi) vh2 (vi) vh3 (vi) vh3,τ (vi) vh3,ν(vi) vh1 (vi+1) vh2 (vi+1) vh3 (vi+1) vh3,τ (vi+1) vh3,ν(vi+1)]

T .
The global finite-dimensional space and d.o.f. set result

Vh = {vh ∈ V0 : vh|E ∈ Vh,E,∀E ⊂ T h} and D = {vh(v),∇vh3 (v),∀ internal vertex v}. (16)

Let vh = ΠEvh + (I − ΠE)vh, with I the identity map. The local projector operator ΠE ≡ Π : Vh,E →
[P1(E)]

2 × P2(E) is here defined such that, ∀vh ∈ Vh,E,
∫
∂E

Πvh dτ =
∫
∂E

vh dτ∫
E
∇Π3vh3 dζ =

∫
E
∇vh3 dζ

ãE(p,Πvh − vh) = 0,∀p ∈ [P1(E)]
2 × P2(E)

, (17)

with Πvh = Παvhαe
r
α+Π3vh3e

r
3 and ãE(•, •) :=

∫
E
εα(•) ·εα(•) dζ = ãE,α(•, •)+ ãE,3(•, •) (see e.g. eq. (10)).

The first two and 3rd of eq. (17) relate to, respectively, the stability and consistency conditions the method requires.
For now, let the projection be expressed by Πvh = Πm, with

Π =


π11 π12 π13 0 0 0

π21 π22 π23 0 0 0

π31 π32 π33 π34 π35 π36

 and m =
[
1 ξ1 ξ2 ξ21 ξ1ξ2 ξ22

]T
. (18)

In eq. (10) the terms ∇ · N and ∇ · M vanish by the chosen method order (kα, k3) = (1, 2). Then, by the 3rd

condition of eq. (17),∫
E

εα(p) · εα(Πvh) dζ =

∫
E

εα(p) · εα(vh) dζ =

∫
∂E

(Ñ(p) : vh ⊗ ν + M̃(p3) : ∇vh3 ⊗ ν) dτ, (19)
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with Ñ = ηα ⊗ erα and M̃ = er3 × κα ⊗ erα. Let a test function for eq. (19) be expressed by p = Sm, with S
as eq. (18)1 but with arbitrary coefficients. The left-hand side of eq. (19) 1st equality may be exactly computed
over the boundary by the divergence theorem (specialized to the plane), as it only has polynomials. The right-hand
side of eq. (19) 2nd equality may be computed by the d.o.f. Then, part of Π is obtained by (with no summation
convention)

Gi :=
∂2ãE(p,Πvh)

∂sai ∂π
a
i

, bi :=
∂ãE(p,vh)

∂sai
, Giπ

a
i = bi and πa

i = G−1
i bi, (20)

with πa
i := [πiNker

i +1 . . . πiNk
i
]T , sai := [siNker

i +1 . . . siNk
i
]T , Nker

α := dim(ker(aE,α)) = 1, Nker
3 :=

dim(ker(aE,3)) = 3, Nk
α := dim(P1(E)) = 3 and Nk

3 := dim(P2(E)) = 6. Now, to complete the projection
definition we solve the equality of deflection gradients and mean displacements (from the remainder two conditions
of eq. (17)) ∫

E

∇Π3vh3 dζ =

∫
E

∇vh3 dζ =

∫
∂E

vh3ν dτ and
∫
∂E

Πvh dτ =

∫
∂E

vh dτ. (21)

For the plane stress solution, let ΠE33 be defined such that ΠT33 = 0. Then, from eq. (6),

ΠE =
1

2
(ΠF +ΠFT − 2I) + ΠE33e

r
3 ⊗ er3 and ΠT = λtr(ΠE)I + 2µΠE. (22)

The projected internal potential energy, constant in strains and curvatures, results

ΠUE =
1

2
aE(Πuh,Πuh) =

1

2

∫
E

σα(Πu
h) · εα(Πuh) dζ. (23)

Note that eq. (22) and so eq. (23) are computable once eq. (20) is solved.
The remainder is a stabilization term, say, bE(•, •) a bilinear form containing the orthogonal quantities w.r.t.

Πvh and ∇Π3vh3 , i.e. v̂h = (I − Π)vh and ∇v̂h3 = ∇(I − Π3)vh3 . It may be the sum of their inner products
evaluated at the nodes and also conveniently scaled by, e.g. βα = 1

2 tr(∂
2ΠUE,α

∂d2 ) and β3 = 1
2

Eh3

12(1−ν2) (flexural
rigidity). The stabilization potential energy results

UE
s =

1

2
bE(uh,uh) :=

Nv∑
i=1

(βαû
h
α(vi)û

h
α(vi) + β3(|E|−1ûh

3 (vi)û
h
3 (vi) +∇ûh

3 (vi) · ∇ûh
3 (vi))). (24)

Note that all d.o.f. and conditions of eq. (17) (all components of Π) are used in eq. (24). This in general is
necessary for the stiffness matrix to have full rank. As shown in Wriggers et al. [5], another option for eq. (24) is
to consider the edge errors, i.e.

UE
s :=

Ne∑
i=1

∫
ei

(βαû
h
α(ei)û

h
α(ei) + β3(|E|−1ûh

3 (ei)û
h
3 (ei) +∇ûh

3 (ei) · ∇ûh
3 (ei))) dτ. (25)

Specializing eq. (11) with m̄ = 0, the considered external potential energy is (see e.g. Mengolini et al. [4] and
Brezzi and Marini [3])

Uh,E
ext = −⟨n̄h,g,uh,g⟩E = −|E|n̄h,g.

1

Nv

Nv∑
i=1

uh,g(vi). (26)

Finally, with eq. (23), eq. (24) (or eq. (25)) and eq. (26), the total potential energy is

Uh,E = Uh,E
int + Uh,E

ext = ΠUE + UE
s + Uh,E

ext =
1

2
ah,E(uh,uh)− ⟨n̄h,g,uh,g⟩E. (27)

Differentiation of eq. (27) w.r.t. d leads to the residual

rh,E =
∂Uh,E

∂d
, (28)

from which differentiation results in the stiffness matrix

Kh,E =
∂rh,E

∂d
, (29)

both referred to the global system. Let they be assemble as rh = AE∈T h rh,E and Kh = AE∈T h Kh,E. The
discrete form of the theorem of potential energy or variational form, equivalent to the discrete counterpart of
eq. (12), results {

uh ∈ Vh

rh = 0
. (30)
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4 Results

We named the element using eq. (24) and eq. (25) as “VKLT3” and “VKLT3S2”, respectively. The element
and numerical results are implemented with the Wolfram Mathematica software system and the AceSystem, see
e.g. Korelc and Wriggers [7]. Values are in SI units and current configurations are in true scale.

4.1 Partially clamped hyperbolic paraboloid shell

The 1st example data are a hyperbolic paraboloid Ω given by z = x2 − y2 and − 1
2 ≤ x, y ≤ 1

2 , thickness
h = 0.01, h = 0.001 and h = 0.0001, partially clamped ∂Ω, body load f b

3 = −8 × 103, Young modulus
E = 2× 1011 and Poisson ratio ν = 0.3. The analyzed solution is the vertical displacement at point “A”, see Fig.
1 (left), and the global strain energy each for three span-to-thickness ratios L

h = 1
h . Reference solutions are given

by the extrapolation values in Tables 17 and 18 of Krysl and Chen [8].

Figure 1. 1st example data, reference (left) and current (right) configurations (NE = 200) (Lh = 10000).

Figure 2 shows convergence with mesh refinement and satisfactory relative error magnitudes using the ele-
ment “VKLT3”. This example shows the structure response to the action of the body load included in eq. (26).
One sees better convergence for lesser thickness, which may be explained by the fact that the reference solutions
come from a shear-flexible finite element. Nevertheless, for all L

h the relative errors present asymptotically the
same order of magnitude.

Figure 2. 1st example displacement (left) and strain energy (right) convergence curves.

4.2 Pinched hemispherical shell

The 2nd example data are a hemisphere Ω given by x = 10 cos θ sinϕ, y = 10 cosϕ, z = 10 sin θ sinϕ,
θ ∈ [0, 2π) and ϕ ∈ [ π10 ,

π
2 ], thickness h = 0.04, free ∂Ω, concentrated loads of magnitude 100, Young modulus

E = 6.825 × 107 and Poisson ratio ν = 0.3. The analyzed solutions are the vertical and lateral displacements
at points “A” and “B”, respectively, see Fig. 3 (left). For solution comparison we use the finite elements “T6-
3iKL” of Sanchez et al. [9], “RMT3” and “RMT6”, the last two being linear and quadratic triangular elements for
Reissner-Mindlin shells (AceShare), respectively.
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Figure 3. 2nd example data, reference (left) and current (right) configurations (NE = 800).

Figure 4 shows convergence with mesh refinement and the efficiency of stabilization from eq. (24) and
eq. (25), as no significant distinction between “VKLT3” and “VKLT3S2” is observed. In this example, they
outperform the finite shell elements even having lesser N dof compared to the lasts. Note that bending has an im-
portant role in this example. Also a triangle, the “T6-3iKL” presents quadratic displacement, nonconforming linear
rotation and constant curvature approximation orders. “VKLT3”, instead, has the same curvature approximation
order from the projection (consistency), which is enhanced by the remainder (stability). Indeed, from eq. (13),
eq. (14) and the discussion therein we have Hermitian out-of-plane displacements, which may explain part of the
result.

Figure 4. 2nd example convergence curves.

4.3 Thin Raasch hook

The 3rd example data are a two joined strips of circular arcs Ω with radius of magnitudes 0.3556 and 1.1684,
cross section 0.000508× 0.508, partially clamped ∂Ω, shear load of magnitude 8.92898× 10−7, Young modulus
E = 2.32013 × 106 and Poisson ratio ν = 0.35. The analyzed solution is the vertical displacement at point
“A”, see Fig. 5 (left). Solutions of the same elements used in the 2nd example and of the “VKLT3” extension to
quadrilateral “VKLQ4” are compared.

Figure 5. 3rd example data, reference (left) and current (right) configurations (NE = 288).
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Figure 6 shows convergence with mesh refinement using the proposed element. One sees that “VKLQ4”
rapidly converges in this example. It presents more N dof compared to “VKLT3” and “VKLT3S2”. Fixing the mesh
with similar total number of d.o.f. almost the same scenario results for coarse meshes, which shows the efficiency
of the stabilization from eq. (24) as it has a more important role for a quadrilateral than for a triangle. On the other
hand, “VKLQ4” application is restricted to cylindrical shells as aforementioned. The proposed triangular element
outperforms “RMT3” and “RMT6”, and presents similar convergence compared to “T6-3iKL”.

Figure 6. 3rd example convergence curves.

5 Conclusions

This work may show the VEM efficiency and versatility when applied in the context of structural theories.
The 1st regards to the satisfactory accuracy reached in numerical results even for the present low-order case. The
2nd regards to, beyond the inherent aspects of the method (e.g. the various possible choices of element geometry,
d.o.f., projection and stabilization schemes), the possibility of unifying aspects of different applications. Besides
possible improvements of the present formulation regarding, e.g. projection and stabilization schemes, the vastness
of possibilities for future works includes, e.g. element geometry, approximation order and nonlinear behavior
generalizations.
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