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Abstract. Besides structural engineering, rubber-like materials have been used in several fields such as 

bioengineering and medicine. Usually, these materials undergo, not only large displacements, but large 

deformations as well, and this requires a special attention to write a formulation both mathematically and 

physically consistent. To this end, one must choose a strain measure that, preferably, depends on the initial 

configuration of the body and that results in the null tensor for a given arbitrary rigid body motion. One of the 

most used strain measures in this context is the Green strain. However, this measure does not show a physical 

coherence for the one-dimensional case, as it is known. Thus, this work formulates the problem by using another 

strain measure, namely, ln U, where U is the right stretch tensor. The positional formulation of the finite element 

method together with the Newton-Raphson procedure are applied for solid analysis. The constitutive equation is 

supposed to be linear. At the end, a comparison between the numerical results obtained by the Green strain and by 

ln U is performed. 
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1  Introduction 

According to Ramezani and Ripin [1], rubber-like materials have several applications such as seals, 

adhesives, tires, springs, shocks isolators and noise and vibration absorbers. Since they have high deformability, a 

special care must be taken to formulate its governing equations with physic and mathematic coherence. In this 

context, the chosen strain measure plays an important role. A well-known strain tensor is the Green strain GE, 

which is widely used by means of the St. Venant-Kirchhoff (SVK) constitutive model. Nevertheless, this 

constitutive model has some drawbacks for large strain regimes. A common strategy to overcome this limitation 

is to use the SVK model repeatedly to approximate non-linear stress-strain relations, which is basically a multi-

linear procedure. However, Sautter et al. [2] have pointed out that this strategy, while might hold for large tensile 

strain regimes, is not suitable for large compressive strains, where a nonphysical softening behavior occurs. 

Within this scenario, many constitutive relations with alternative strain measures have been proposed, as one 

can see in Darijani et al. [3], Korobeynikov [4], Annin and Bagrov [5], Korobeynikov et al. [6] and 

Korobeynikov [7]. Particularly, the Hencky strain, which is the natural logarithm of the left stretch tensor V (ln V), 

and the Hooke’s law play a central role. The reason is because Hencky strain forms a work-conjugate pair with 

the Cauchy stress for an isotropic body, i. e., ln V is expected to give plausible physical responses since it 

conjugates with the true stress. Scientific community does not suspend the study on this strain, as one can see in 

Le mire et al. [8] and Bertóti [9]. Besides, the material constants of the Hooke’s law (Lamé parameters or the 

Young Modulus E and the Poisson ratio ) are known for the most materials used in engineering, so its use consists 

in a considerable advantage. 

In this work the strain tensor adopted is lnE = ln U. This choice is based on the finite element formulation 

used here, namely, Positional Formulation of the Finite Element Method (PFFEM), which is intrinsically total 

lagrangian. Thus, the constitutive equation regarding lnE (henceforth named as LLOG) is RT = 2 lnE + (tr lnE) I, 

where RT is the work-conjugate stress tensor to lnE, I is the unit second-order tensor and  and  are the Lamé 

parameters. The use of this constitutive relation together with PFFEM was not studied yet and, as mentioned above, 

has a great potential to give more reasonable responses than the SKV model. Besides, the present work obtains the 

indicial notation of  
lnE/F, where F is the deformation gradient, using a more general approach than that one (see 
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Pascon [10]) normally utilized to obtain  
GE/F. Actually, the approach of Pascon [10], which is standard in later 

works using PFFEM, is not able to provide the first derivative of the chosen strain tensor with respect to F when 

the strain depends upon F in a more complex way, such as in the case of lnE. 

Worths to mention that, according to Volokh [11], the use of Hooke’s law with a work-conjugate stress-strain 

pair guarantee the existence of the strain energy density, which is a basic assumption in the developing of the 

section 2.2. At the end of this paper, the results given by SKV and LLOG models are compared. 

2  Theoretical fundamentals 

2.1 Mathematical preliminaries 

Let V, T 
2 and T  

4 be the set of all vectors, second-order tensors and fourth-order tensors, respectively. If 

{e1, e2, e3} is the canonical basis of the cartesian coordinate system, then A  T 
2 and A  T  

4 are written as 

A = Aij (ei  ej) and A = A ijk(ei  ej  ek  e), respectively. The inner product A : B has the following properties 

( ) ( ) VABBVA :: T=  and ( ) ( ) CAVBBCVA :: TT= , (1) 

where B, C, V  T 
2. According to Holzapfel [12], the tensor product A  B is the fourth-order tensor such that 

( ) ( )AVBVBA :: = . (2) 

Moreover, the property 

( ) ( )dcbadcba =  (3) 

will be useful, with a, b, c, d  V. Next, following Holzapfel [12], there are unit tensors I, Ī  T  

4 such that 

AA :I=  and AA :I=T
, (4) 

with 

( ) ( ) eeeeeeee == kjijikkjiijk II  and ( ) ( ) eeeeeeee == kjijkikjiijk II , (5) 

where ()() is the kronecker delta. Lastly, the Gateaux differential is expressed by 

( )  ( )

0

0
0

=

+
=





d

d
D

AXF
AXF  (6) 

and 

( )
( )  ( )XFY

X

Y
AAXF

XFX

F
=




==



 →

andwith,:then,
:

if 4
22

T
TT

DDD


. (7) 

2.2 Positional Formulation of the Finite Element Method (PFFEM) 

PFFEM has been conceived around 20 years ago and it has shown itself reliable as also accurate. Its recently 

application in 3D analysis include, e. g., Siqueira and Coda [13] and Pascon [14]. Rather adopting linear 

displacements as unknown variables, PFFEM uses the nodal positions. In this work, eight nodes hexahedral finite 

element is used. Following Pascon [14], the usual mappings concerning to a 3D computational implementation are 

shown in Fig. 1, where ,  and  represent the fictitious space and , ~ and ̄ are defined such that  = ~ ◦ ̄ 

–1. 
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Figure 1. Mappings for 3D computational implementation. 

According to Pascon [14], 

1~ −= FFF , (8) 

where F, F
~

 and F̄ are the gradients of , ~ and ̄, respectively. Next, the total potential energy  of a finite element 

is given by 

ii xfVd −= 0

0 , (9) 

where 0 indicates the reference configuration, with strain energy density  and volume V0. The term fi is the force 

acting on a current nodal direction xi, with i = 1, 2, 3, …, 24. The equilibrium equation for an arbitrary lagrangian 

work-conjugate stress-strain pair (T, E) is 
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where in step (I) one used the definition of hyperelasticity, Tk =  /Ek. Now, expression Ek /xi of eq. (10) 

takes the form 

( ) 1
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where in step (I) one used eq. (8). From eq. (10), let 

( ) ( ) i

i

k
kki fVd

x
g −




+= 0

0tr2 


E
E Ex  (12) 

be a component of a residual vector g(x). Then, one can uses the Newton-Raphson’s Method to solve eq. (10), or 

g(x) = 0. Thus, linearizing g(x) around a known vector x0, one gives 

( ) ( ) ( ) ( )0

1

000 xgxgx0xxgxg
−

−==+ , (13) 

where the indicial notation of g(x0) is obtained by eq. (12), 
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For a predefined tolerance tol, the convergence of the Newton-Raphson Method is verified by ||x|| / ||x||  tol. 

Now, expression 2Ek/xixj of eq. (14) takes the form 
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where in (I) it was used eq. (8). From eqs. (11) and (15), one concludes that the PFFEM is completely determinated 

if the terms Ek /Fno and 2Ek /FnoFrs of the chosen strain tensor E are known. 

3  Methodology 

The methodology of this work to obtain the first derivate of lnE with respect to the deformation gradient is: 

1) write the strain in tensorial notation; 2) apply the Gateaux differential and 3) write the final expression in the 

format indicated in eq. (7). To exemplify this strategy, one first applies it to the Green strain. Initially, the tensorial 

notation of GE is 

( ) ( )IFFFGE −== T

2

1G
. (16) 

Next, one uses eq. (6) considering eq. (16), 

( )  ( )
( ) ( )  ( )FAAFIAFAF

AFG
AFG

TTT
+=



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
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d

d
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D . (17) 

Now, let {e1, e2, e3} and {d1, d2, d3} be the referential and current bases. Developing FTA of eq. (17) one has 

( ) ( ) ( ) ( ) 
)III()II()I(

:: === onnonqnqoqkokq AF eddeeeeeAFAF TT I  

( ) ( )  ( )( )  ( ) ( )( )  ( )
)V()IV()III(

:: ===  eeeddeeeeddeeeee konnqoqnonqokqonnqoqknonqokq AFAF   

( )( )  ( ) ( ) ( ) ( )  ( )( ) 
)VII()VI()V(

:: === oqqnonknonqokqkonoqqnnonqokq AFAF eeededeeeeedeeed    

( ) ( )  ( ) AedeeAFededee ::
)VII(

onknkoonnoonknko FAF ==   T
, (18) 

where in (I) one used eq. (4)a, in (II) eq. (5)a, in (III) eq. (3), in (IV) eq. (2), in (V) eq. (1)a, in (VI) eq. (2) and in 

(VII) eq. (3). Next, one develops ATF (most of the steps are suppressed since this procedure is similar to the 

previous one), 

( ) ( ) ( ) ( ) ( ) === onnonqnqoqkqko AF eddeeeeeAFAFFA ::
)II()I(

TTTT I  

( ) AedeeFA :onknkoF = T
, (19) 

where in (I) one used eq. (4)b and in (II) eq. (5)b. Substituting eqs. (18) and (19) in eq. (17) one has 

( )  ( )( ) AedeeAFG :
2

1
onknkonko FFD +=   . (20) 

In view of eq. (7), one concludes from eq. (20) that 
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( )( )onknkonko FF edee
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 

2

1G

, (21) 

and  
GEk /Fno follows directly. This same result can be found in Pascon [10], where a less general approach is 

used. Now, since U = FTF, for lnE one defines 

( ) 




== FFFKE

Tlnln . (22) 

Applying eq. (6) and considering eq. (22) one has 

( )  ( )
( ) ( ) =






 ++=
+

=
== 00

ln






AFAF

AFK
AFK

T

d

d

d

d
D  

( ) ( ) ( )  ( )FAFFAFAFKFAAFFF
TTTTT −−−−

+=+= 111
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D . (23) 

Developing F–1A of eq. (23) one has (see the procedure to obtain eq. (18) for more details) 

( ) ( ) ( ) ( ) == −−−

onnonqqnoqkokq AF eddeeeeeAFAF
111 :: I  

( ) AedeeAF :11

onkknoF = −−

 . (24) 

Developing F–1F–TATF of eq. (23) one gives 
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where in (I) one used eq. (2), in (II) eq. (1)b and in (III) eq. (2). Substituting eqs. (24) and (25) in eq. (23) one has 

( )  ( )( ) AedeeAFK :
2

1 111
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In view of eq. (7), one concludes from eq. (26) that 
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Now, if Y = N(F) = F−1, one can be proved that Yk/Fno = −F 

−1 

kn F 

−1 

o . Thus, one derivates eq. (27)b with 

respect to Frs to obtain 
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( )1111111111
ln2

2

1 −−−−−−−−−− −−+−=



 stkrotnktstornktotsnrsnkro

rsno

k FFFFFFFFFFFF
FF

E

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4  Axial problem 

Now, one presents the results of the axial uniformly distributed loading q of a prismatic solid (Fig. 2a) of 

square base (side 1.0 m) and 0.125 m length. The two plane-symmetry of the Fig. 2a is considered for modelation 

purposes, leading to the mesh of Fig. 2b. The nonlinear analysis is performed by a fixed incremental load q. 

              

                                                            (a)                                                                (b) 

Figure 2. (a) Axial problem data. (b) Mesh used in the analysis (two-plane symmetry is applied). 

Fig. 3 shows the results obtained, where  is the stretching. For the 1D Green strain one has g() = (2 – 1)/2 

and for the 1D logarithmic strain g() = ln . The curves for both SKV and LLOG models are concerning to the 

central node of the top section of the solid in the Fig. 2a. The agreement of the LLOG model is excellent in both 

tension and compression regimes, as one can see in Fig. 3. However, in the compression regime, the SKV model 

was unable to give response for  < 0.6, as indicated in Fig. 3. In tension regime, SKV model shows great results. 

 

Figure 3. Axial problem results. 

5  Conclusions 

Using a more general approach to obtain the indicial notation of the derivative of a strain measure with respect 

to the deformation gradient, this work presents and implements PFFEM considering the logarithmic strain tensor 

(ln U) by means of a linear constitutive relation between it and its work-conjugate stress tensor. The results of this 

constitutive equation were exceptional for the axial problem. In the compression regime, it was able to provide 

responses for very small stretchings, unlikely SKV model, which has stopped in a stretching around 0.6. Therefore, 
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the LLOG model proved itself worthy of further investigations. 
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