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Abstract. Structural damage induces local flexibility into the structure generating undesirable displacements and
vibrations. Such changes in the dynamic response can be used as a resource allowing us to discriminate the
current structural condition and to predict its useful life for short or long periods. Early damage detection and
periodic structural integrity assessment are the keys for the system to operate correctly and prolong its lifespan.
Many structural health monitoring techniques have been used in technologies that combine modern sensors and
intelligent computational algorithms. This study focuses on applying machine learning (ML) algorithms within a
multiclass framework to monitor structural integrity, enabling the identification and quantification of damage. In
this context, this paper proposes a strategy to damage detection in a beam structure based on an artificial neural
network machine learning algorithm. A damage index calculated from the natural frequency builds the input
dataset for the ML algorithms. The methodology combines supervised learning classification (artificial neural
networks) and unsupervised (cluster k-means) methods for constructing a hybrid classifier. The results show that
the hybrid classifier can correctly classify the integrity condition of the structure compared to the artificial neural
network algorithm.

Keywords: Hybrid Learning, Structural Health Monitoring, Damage Detection, K-means, Neural Network Artifi-
cial.

1 INTRODUCTION

Beam-like structure elements are widely employed in various mechanical and structural systems, covering
applications that encompass rotating machinery, aircraft, bridge structures, oil platforms, and wind turbines, among
other instances. Such systems are subject to a multiplicity of forces, loads, and environmental influences that,
throughout their operation, are susceptible to damage. Therefore, it is critical to ensure the structural integrity
of the system. Early damage detection and periodic structural integrity assessment are necessary for the system
to operate correctly and for damage to be identified, monitored, and corrected. Thus, many Structural Health
Monitoring (SHM) techniques are being used. SHM can detect and interpret changes in the structure to obtain high
performance in operation and consequently reduce maintenance costs, thus increasing the safety and reliability of
the structure [1]. These techniques use technologies that combine modern sensors and intelligent computational
algorithms. The extraction of damage-sensitive information and the statistical analysis of these measurements
allow discriminating the current structural condition for short or long periods [2, 3]. The study by Gillich [4]
investigated the ability to identify the location and intensity of cracks in a beam subjected to rocking based on
natural frequency analysis. The beam was subjected to different degrees of fixity, and the results highlighted that
using Artificial Neural Networks (ANN) provided more accurate estimates of crack location and severity compared
to the Random Forest (RF) approach.
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Sousa et al. [5] investigated the preference of a few supervised machine learning algorithms to identify and
quantify damages. The authors show that the mains data classification highly influences supervised ML algorithms
but could perform the damage level accurately. Salehi et al. [6] investigated three supervised algorithms (Sup-
port Vector Machine - SVM, k-Nearest Neighbors - kNN, and Artificial Neural Networks - ANN) to evaluate the
damage detection performance of an aircraft wing stabilizer subjected to dynamic loading. The results revealed
that the SHM approach employing ML efficiently detected damage in a novel self-powered sensor configuration,
even in noise and incomplete binary data. In a similar line of research, Mansouri Nejad et al. [7] employed the
combination of ANN with the Discrete Wavelet Transform (DWT) and Empirical Mode Decomposition (EMD) to
process acceleration responses measured on a structure analogous to an offshore jacket. The results revealed that
DWT, compared to EMD, presented a more robust signal processing method in damage detection, notably due to
a better noise reduction capability. In turn, Nunes et al. [8] proposed an approach that amalgamates ANN-based
supervised and unsupervised classification techniques, such as k-means clustering, to build a hybrid classifier.
The methodology’s effectiveness was extensively evaluated using data from numerical simulations and experimen-
tal tests performed in laboratory and in situ environments. The performance of the hybrid classifier was highly
satisfactory, evidencing its ability to identify known patterns of behavior and detect new structural conditions
accurately.

In this context, a dataset is built, comprising samples of healthy and damaged cantilever beams, which serves
as the basis for training the algorithms. Through exposure to this labeled and unlabeled dataset, the algorithms can
differentiate between different types and severities of damage, thus facilitating accurate identification and classifi-
cation. This study focuses on applying machine learning algorithms within a multi-class framework to monitor the
structural integrity of a cantilever beam, enabling damage identification and quantification. The methodology com-
bines supervised (artificial neural networks) and unsupervised (k-means clustering) learning classification methods
to build a hybrid classifier. These techniques’ challenges, performance characteristics, and practical considerations
are discussed.

2 CLASSIFICATION METHODS

This section provides a perspective on supervised classification approaches, represented by ANN, and unsu-
pervised, exemplified by the k-means clustering method. The fundamental distinction between these two methods
is that the former relies on previously known labels (provided as input data) to define distinct classes. In contrast,
the latter groups unknown objects into different clusters according to an intrinsic notion of similarity. An advan-
tage of unsupervised methods is their ability to categorize unseen data by leveraging the inherent structures in the
data to form cohesive groups [9]. In contrast, in supervised methods, the ability to classify unseen data is limited
since these methods require pre-existing labels to identify the classes.

2.1 Artificial Neural Network

Artificial neural networks are data-driven supervised ML models that have attracted considerable interest
across engineering domains [10]. The ANN scheme presented approach in this work comprises an input layer,
three hidden layers, and an output layer, all interconnected with the previous ones. The hidden and output layers
are composed of neurons that work with functions that aim to add nonlinearities to the model, known as transfer
or activation functions. The adjustable weights weigh the inputs before being processed by the neurons of the
layers. The ability of ANNs to combine patterns allows them to solve a wide range of problems, including damage
detection and structural integrity monitoring. The total number of neurons chosen in the input layer equals the
number of control variables in the input data, which should be representative enough to model the structural
phenomenon. The hidden nodes in the ANN layer are processing units to obtain the weighted sum of the signals
obtained from the input layers. The number of hidden layers depends on the complexity of the problem being
modeled [11]. The output signal is formulated as follows:

Oj = f
∑

(wijIi + b) (1)

where Oj is the output of the model, wij is the associated weight that is updated at each epoch, and Ii is the input
data fed into the node with a bias term b. The final output of the sum is passed through an activation function f to
obtain the final output.
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2.2 k-Means Clustering

The k-means method is an unsupervised clustering technique that aims to partition a dataset into homoge-
neous groups or clusters, where the objects within each group are similar and different from those in the other
groups. The operation of k-means involves the definition of a predetermined number of clusters, represented by
”k”, followed by the iterative allocation of the objects in the clusters to minimize the sum of the squares of the
distances between the objects and the centroid of the cluster to which they are assigned. The centroid is a midpoint
that represents the center of the cluster [8].

3 DAMAGE ESTIMATION IN BEAM BASED ON DAMAGE INDEX

Damage detection methods have been applied to identify and quantify structural damage through changes
in the dynamic behavior signature of the system. When a crack propagates in a structure, it modifies the local
stiffness, damping, and mass, changing the system’s dynamic response and modal parameters. Therefore, these
changes in dynamic characteristics can be used as damage indicators compared to the original signal. Thus, the
damage indices (DI) based on the natural frequency of the beams are used for damage detection in this work.

The change in natural frequency is used in damage detection methods to ascertain the structure’s integrity. In
the presence of structural damage, such as a crack, the stiffness is reduced, and consequently, the natural frequency
decreases. Several methods have considered natural frequency shifts to detect structural anomalies and damage.
Structural damage reduces its local stiffness and induces a natural frequency shift [12]. A way to formulate the
DI from the normalization of the natural frequency is described by [13], which relates the natural frequency of the
undamaged system to the state under damage. Thus it is employed to create an indicator to classify the integrity
of the structure, seen in equation 2, which compares the natural frequency of the damaged (ωd

i ) and undamaged
(ωu

i ) beam, as

DI =
ωu
i − ωd

i

ωu
i

(2)

3.1 Data generation

The simulated system is a cantilever beam modeled by the spectral element method (SEM) as presented in
[5]. The SEM involves the exact transformation of the wave equation to the frequency domain, making it especially
suitable for solving crack-related problems. The beam is excited with a unit force applied at the free end, and the
response is obtained at the same point. The beam has length L = 1m, width 0.01m, and height 0.03m. The crack
is located at L1 = 0.5L, and the crack depth varies from 5 to 35% of the beam cross-section. Young’s modulus
of 2.1 GPa and bulk density of 7800 kg/m3 are the material properties. Structural cracking reduces the system’s
stiffness by inducing a shift in the resonance frequencies, which can affect different modal shapes depending on
the location of the crack.

Figure 1. Schematic design of the cantilever beam, modal shape, and inertance FRFs for different crack depth
levels.

Figure 1 demonstrates the effect of a crack with different degrees of severity on the dynamic response of
the beam, and in this case, the fourth, fifth, and sixth mode shapes were the most affected by the damage. In
addition, the natural frequencies, estimated from the dynamic response, are employed to calculate the DIs. The
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dataset was constructed using three natural frequencies of the braced beam, which for the undamaged state are
ω4 = 865 Hz, ω5 = 1430 Hz, and ω6 = 2136 Hz, relating the fourth, fifth and sixth mode shapes. In preparing
the dataset, random values of DIs were generated for training and testing ML algorithms with 160 samples. The
crack flexibility used to model the crack was considered a random variable modeled with normal distribution and
a coefficient of variation of 10%.

Figure 2 shows a scatter plot of the correlated dataset obtained for the damaged beam with 25, 30, and 35%
crack depths. Figures 2a, 2b, and 2c display the correlation DI1 and DI2 calculated with the fourth, fifth, and
sixth natural frequency, respectively, are manually classified. Figures 2d, 2e, and 2f show the DI1 and DI2
correlation calculated with the fourth, fifth, and sixth natural frequency, respectively, classified through the non-
supervised algorithm, K-means, using k=4. A false positive estimate was observed in the prognostic process with
the manually classified data due to the high correlation of points for all natural frequencies, which can directly
influence the algorithm’s performance. Unlike the data classified through K-means, at crack depths of 25, 30, and
35%, the DIs tend to gather around 0.97, 0.95, and 0.92, respectively. After that, following the DI values, the
dataset was labeled into four integrity classes, 25-Damage, 30-Damage, and 35-Damage. DI higher than 0.98,
comprising the crack severity between 1 to 20%, was assumed to be a healthy condition of the structure.
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Figure 2. Scatter plot correlating the data set of samples of groups of DIs obtained for the damaged beam with a
crack depth of 25, 30, and 35 %. (a-c) DI correlations are sorted manually, and (d-f) DI correlations are sorted with
k-means.

3.2 Cross-validation of dataset

The architecture of the ANN designed in this paper is of sequential type, using the Keras library, which
means that the layers are stacked sequentially. The network has three layers with ReLU activation, the output
layer with a number of units equal to the number of classes in the problem, and softmax activation for multiclass
classification. The optimizer used is adam, the loss function is categorical crossentropy, suitable for multiclass
classification problems, and the evaluation metric is categorical accuracy. The classifier is configured with the
parameters epochs = 400 (number of training epochs) and batch size = 10 (batch size for training).

The determination of suitable hyperparameters was performed through a strategic cross-validation process.
This process involved varying the units present in the hidden layers of the neural model, with the discrete values
of 10, 50, 100, and 150 neurons selected as exploration points. The adoption of the cross-validation method is
justified by its ability to mitigate any systematic biases that may manifest during the testing phase. In particular, the
technique segregates the datasets into distinct training and test plots, in proportions of 75% and 25%, respectively.
The cross-validation process adopted was based on dividing the dataset into ten discernible partitions (cv = 10),
in which the properly trained neural network was evaluated in each partition iteratively. The selective metric
for evaluating this performance was accuracy, an evaluation measure that quantifies the model’s ability to make
accurate predictions of sample classes.
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Table 1. Cross-validation of algorithms.

Algoritms Cross- validation
Units - Mean Accuracy Units - Standard Deviation

10 50 100 150 10 50 100 150

Hybrid algorithm

DI(ω4) 32,20 84,37 91,25 90,00 26,90 8,94 8,00 11,59

DI(ω5) 40,00 75,62 88,75 90,62 39,05 16,16 8,29 10,55

DI(ω6) 27,50 84,37 95,00 87,5 26,98 13,47 4,68 13,69

ANN

DI(ω4) 16,25 57,50 65,62 58,12 26,98 28,61 26,55 26,38

DI(ω5) 3,75 27,50 25,00 23,12 11,25 33,56 23,88 23,72

DI(ω6) 18,75 58,12 66,25 69,37 29,18 19,57 8,00 14,64

Table 1 shows the results obtained by performing cross-validation in the context of the structural damage
indices DI(ω4), DI(ω5) and DI(ω6), applied to a cantilever beam. This analysis encompasses both the supervised
approach and the hybrid algorithm. Those referring to 100 neurons stand out among the neuronal unit values
explored, revealing a superior performance compared to the other configurations. In this scenario, the average
accuracy reaches remarkable levels, ranging from 88.75% to 95%, accompanied by a standard deviation between
4.68% and 8.29% for the hybrid algorithm. As for the supervised ANN algorithm, the results are average accuracy
between 25.00% and 66.25%, with a standard deviation between 8.00% and 26.55%. These results show that
the hybrid algorithm, employing an arrangement of 100 neurons for each of the three hidden layers, is a suitable
option for effectively identifying the degree of structural deterioration. In this context, the selection of performance
metrics for evaluating the algorithms will be based on using these sets of 100 neurons.

4 NUMERICAL RESULT

The damage quantification using natural frequency-DI considered the beam in intact and damaged condition
with crack severity of 25, 30, and 35%, thus including four classes in the damage identification. Accuracy, Preci-
sion, Recall, and F1 score metrics evaluate the result of the algorithm-defined classification for test data. The values
of the performance metrics are shown in Table 2. The accuracy metric represents how well the model correctly
guessed all positive class classifications. The precision metric represents how well the model correctly guessed
all classifications of positive classes. The recall represents the number of positive class predictions made from all
positive examples in the dataset, and the F1-score is the average between precision and recall. The comparison
of the accuracy of damage detection estimation ranges from 40% to 93% between the algorithms for the natural
frequencies of the three DIs, ω4, ω5, and ω6. In the case of the hybrid algorithm, it achieved higher accuracy with
93%, 85%, and 90% for DI(ω4), DI(ω5), and DI(ω6 ), respectively. Precision, recall, and F1-score metrics followed
the accuracy results, validating the algorithm’s damage estimation.

Table 2. Comparison of performance metrics between supervised algorithm and hybrid algorithm.

Metrics
ANN Hybrid algorithm

DI(ω4) DI(ω5) DI(ω6) DI(ω4) DI(ω5) DI(ω6)

Accuracy 80 40 70 93 85 90

Precision 81 39 68 92 82 90

Recall 81 55 74 91 88 92

F1-Score 80 41 69 91 82 90

Therefore, these metrics alone do not provide sufficient information to diagnose possible errors associated
with the estimation made by the algorithms. Thus, the confusion matrix is also used to track the classification of
the dataset. Figures 3 show the confusion matrices containing values and percentages predicted by the algorithms.
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Where, Figures 3(a, b, c) are estimated by ANN algorithm, Figures 3(d, e, f) by hybrid algorithm. The accuracy
of the hybrid algorithm for DI(ω4) reached 93% due to two misclassifications in the sample for the 30 damage
condition, with one sample assumed to be 35 damage and two samples 25 damage classified as 30 damage. The
hybrid algorithm was found to be more robust compared to the ANN algorithm.
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(b) Hybrid algorithm- DI(ω5)
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(c) Hybrid algorithm- DI(ω6)
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(d) ANN- DI(ω4)
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(e) ANN- DI(ω5)
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Figure 3. Confusion matrix of multi-class classification of DI natural frequency damage using a, b, c) ANN, d, e,
f) Hybrid Algorithm

5 CONCLUSION

This study delved into exploring the hybrid algorithm technique, which incorporates supervisory elements
from ANN and unsupervised components from k-means clustering, to address the task of structural damage de-
tection in a numerically simulated cantilever beam. This beam was subjected to different levels of cracks, and its
condition was evaluated using a signature based on vibration information. Specifically, the natural frequency of
the beam, normalized by the damage index, served as the basis for this evaluation. The vibration analysis methods
were obtained employing spectral element-based calculations, allowing the detailed characterization of the beam
behavior. Subsequently, algorithms were developed and trained based on the available dataset, aiming to discern
the structural condition of the beam accurately. In this context, cross-validation was employed to carefully se-
lect the optimal hyperparameters, maximizing the effectiveness of the algorithms. Comprehensive metrics were
employed to evaluate the algorithms’ performance, including cross-validation and measures such as accuracy, pre-
cision, recall, F1-score, and the confusion matrix. These indicators were applied to the analysis of the damage
detection capacity of the studied algorithms. Comprehensive metrics were employed to evaluate the algorithms’
performance, including cross-validation and measures such as accuracy, precision, recall, F1-score, and the con-
fusion matrix. These indicators were applied to analyze the studied algorithms’ damage detection capability. The
results showed that the hybrid algorithm excelled in effective damage detection compared to the supervised ANN
algorithm. These findings support the proposed hybrid model’s effectiveness in identifying compromised structural
conditions.
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