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Abstract. Complex non-linear mapping between the input and output data is one of the advantages of neural net-
works. The aim of this work is to train a neural network to generate the optimum unit cell topology for a given
constitutive elastic matrix. In order to reverse homogenization, the neural network maps the correlation between
the shape of the unit cell and the constitutive elastic characteristics. With data produced from a collection of var-
ious geometries, a dataset of elastic properties and respective geometries was developed. All of these geometries
underwent homogenization using periodic boundary conditions. To lessen their impact on the homogenized consti-
tutive matrix, the lattice was modeled as a biphasic material, with the solid phase having the material’s properties
and the remaining area of the representative volume element (RVE) being treated as the void phase. To make it
possible to directly impose the periodic boundary conditions, a uniform mesh of square 2D elements was used.
The dataset includes truss-like unit cells based on the FCC and BCC systems, as well as gyroid-like unit-cells, sim-
plified to a 2D representation. In order to increase the dataset, operations between basic unit cell geometries were
applied as well as rotations of the unit cell. The neural network is capable of suggesting unit cells. The non-linear
mapping between the unit cell elastic properties and geometry reduces the computational cost of running structural
optimization to create a unit cell which presents the required properties, for example.
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1 Introduction

Multiscale modeling analyses the material at one length scale, while the results of such analysis are referent
to the properties of the material at another length scale [1]. The use of such numerical homogenization techniques
allows for significant savings in computational time as only a representative region of the material is chosen to
model all the constituents of the structure [2]. In summary, the porous material is transformed into an equivalent
solid material with homogenized properties [3].

Due to their ability to do non-linear mapping between inputs and outputs, neural networks can be used in the
design of unit cell structures that abide by the required mechanical properties.

Neural networks can act as surrogate models for the mechanical properties of structures, accelerating the
homogenization procedure. Some examples of this application are the works of Ma et al. [4], who use a neural
network for the homogenization step in topology optimization, Kim et al. [5] who predict the anisotropic elastic
properties of the unit cell using a neural network which takes the geometric parameters of the cell as input and [6]
whose work surrogates the homogenization and sensitivity analysis step of the topology optimization procedure
with the neural network.

Also, the surrogate model approach can be used in the iterative design of unit cells, combined with opti-
mization algorithms, such as the work of Garland et al. [7] with the design of Pareto optimal unit cells, using a
convolutional neural network (CNN) as a surrogate model for the stiffness of the unit cell. Using the trained CNN,
a genetic algorithm optimizes the unit cell geometry. Ji et al. [8] calculate the homogenized elastic tensor using a
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neural network, while the genetic algorithm optimizes the unit cell geometry.
With respect to the design of unit cells, some other approaches using neural networks can be found in the

literature. Zheng et al. [9] present a conditional generative adversarial neural network (cGAN) to create a structure
presenting a specific Young’s modulus and Poisson ratio and Kollmann et al. [10] present a DL model for the
maximization of shear or bulk modulus or the minimization of Poisson’s ratio, the latter leading to the design of
auxetic structures.

In this work, neural networks are used for the design of a unit cell geometry that matches the given elastic
tensor. First, a neural network is trained to take in the unit cell input and output the elastic tensor. This network
is used in the objective function of the optimization algorithm. Then, another network is trained to output the unit
cell geometry given the required elastic tensor.

2 Materials and methods

2.1 Numerical homogenization

The dataset was labeled with the effective elasticity tensor. This tensor is calculated through homogenization
theory and can be computed from

Cijkl =
1

A

∫
A

Cpqrs(ε
0(ij)
pq − ε(ij)pq )(ε0(kl)rs − ε(kl)rs )dA (1)

where Cpqrs is the locally varying elastic tensor and A is the RVE area. The macroscopic strain tensor is repre-
sented by ε0(ij) and ε(ij) is the locally varying strain tensor. For a plane stress state, the constitutive C matrix will
look like

C =


C11 C12 0

C12 C22 0

0 0 C44

 (2)

and in order to calculate all the elastic constants, it is necessary to apply to the RVE three different macroscopic
strains (for the two normal components and for the shear component). The components of the strain tensor should
be zero except for the component corresponding to the elastic constants that are to be determined. To enforce the
macroscopic strain field, a deformation gradient F (x) was applied to the RVE with periodic boundary conditions.

Considering a periodic RVE Ω, the boundary Γ of the RVE can be decomposed into two parts Γ+ and Γ−.
Each point x+ on Γ+ is connected to just one unique point x− on Γ− and the normal vectors to each point are
symmetrical so that n+ = −n− [2].

The local displacement field u can be decomposed as

u (x) = û (x) + ũ (x) = u0 +H · x+ ũ (x) (3)

where the macroscopic displacement gradient H is equal to the macroscopic strain ε up to a rotation, û = u0+H·x
is the macrodisplacement that corresponds to the applied strain, and ũ (x) is a micro-displacement. The unit cell
simulations assume that in the bulk of the material

ũ (x+ a · λi · ei) = ũ (x) (4)

for any integer λi and all positions of x, and where a denotes the unit-cell length and ei denotes the principal
directions. Thus, it is assumed that the micro-displacement field shares the periodicity of the lattice [11].

The periodicity of micro-displacements is enforced by kinematically constraining the difference in the dis-
placements of paired nodes, and setting this difference as equal to the displacement deduced from the macroscopic
strain [11] so that

u
(
x+

)
− u

(
x−) = a ·H · n (5)

2.2 Dataset

A dataset of several unit cells was created. In order to create a large enough data set 7 basic cells were
created, those being body centered cubic, (BCCa and BCCb),face centered cubic (FCC), square (SQ), octa (OC),
periodic truss (PT) and gyroid (G). These basic units are schematized in Figure 1a. The creation of the whole
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(a) (b)

Figure 1. Characterization of the dataset (a) basic unit cells; (b) final distribution of unit cell counts for each
element of the 20 × 20 grid

data set consisted of operations of sums and subtractions between the several cells, with different wall thickness
combinations, as well as inverting the cells. Due to the chosen resolution, consisting of a 20x20 element grid the
operations between the unit cells lead to duplicates which were removed, with a final count of 6265 unit cells.
Figure 1b shows a density map of the sum of all geometries following the removal of duplicates.
Non-uniqueness of solutions and viability of the dataset: Running homogenization analysis on the structures
indicated that some structures lead to very similar constitutive elastic matrices. For every pair of two configurations
leading to the same matrix, considering a tolerance, one of them is removed from the dataset. Therefore, the final
dataset consisted of a total of 3404 unit cell geometries.

2.3 Neural networks

Two neural networks were created. The first network aims at serving as a surrogate model to the numerical
homogenization procedure and the second to act as a non-linear mapping tool between the constitutive matrix
and the lattice geometry. The second task is anticipated to present a higher degree of complexity, due to the
non-uniqueness nature of the problem. Both approaches used the same dataset, and operated in different ways.
In addition, both networks presented the same training function which is the Levenberg-Marquadt function. The
error metric for both networks was the mean square error (MSE). The activation function for all hidden layers is
the hyperbolic tangent function.

The implementation of the neural networks was done in MATLAB using the deep learning toolbox and the
feedforwardnet function. An implementation example is shown next:

i n p u t s = d a t a ( 1 : s i z e i n p u t , : ) ;
t a r g e t s = d a t a ( t a r g e t i n d e x , : ) ;

n e t = f e e d f o r w a r d n e t ( [ s i z e l a y e r 1 , s i z e l a y e r 2 s i z e l a y e r n ] ) ;

[ ne t , t r a i n i n g r e s u l t s ] = t r a i n ( ne t , i n p u t s , t a r g e t s ) ;

Direct neural network

The neural network acting as a surrogate model has 400 input neurons, one for each element of the grid. The
geometry is characterized by a uniform pixel grid where each element is classified as 0 (no material = void pixel) or
1 (material pixel). The output of this network is size 4, corresponding to the non-zero constants of the constitutive
matrix. Figure 2 shows a scheme of a neural network used to create the homogenization surrogate model where
the height of the hidden layers was 50 and the width consisted of 5 hidden layers. The hidden layers presented
hyperbolic tangent activation functions and the output layer presented a linear activation function.

Reverse neural network

The neural network to run reverse homogenization has 7 input neurons, 4 for the non-zero constants of the
constitutive matrix, an additional one for the volume fraction of the desired structure and 2 more for the coordinates
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Figure 2. Network architecture scheme for the surrogate model to run direct homogenization
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Figure 3. Network architecture scheme for the surrogate model to run reverse homogenization

of the pixel being evaluated. The output consists of the density of the pixel being calculated. Thus, this network
must be called 400 times in order to obtain a full grid. This network presents 5 hidden layers, each with 50 neurons
and hyperbolic tangent activation functions, as shown in Figure 3.

Optimization problem

The direct neural network can be used as a surrogate function allowing to achieve an optimal geometry
through optimization algorithms. The objective function is the difference between the target array and the output
array of the network. Therefore, a substantial amount of computational cost is saved because the FEM analysis
required to calculate the constitutive elastic matrix is bypassed. In this work, a genetic algorithm is used to
minimize the objective function. The design variables are each element in the material map. The optimization
problem to be solved is shown next

minimize
x

f(x) = |Ctarget −N(x)|

subject to vf − tol <=

∑
x

n
<= vf + tol

xi >= 0

xi <= 1

xi ∈ Z
xΓ− = xΓ+

(6)

where n is the length of x and N(x) is the output from the neural network surrogate model. A tolerance is added
to the volume fraction constraint. Additionally, a periodicity constraint is added where xΓ− = xΓ+ meaning that
the elements on the Γ+ side of a boundary, horizontal or vertical, must be the same as the elements on the Γ− side
of a boundary.

3 Results and discussion

3.1 Direct neural network

The performance of the network for the direct tast is shown in Figure 4 which shows the regression between
the targets and the outputs of the separate test set (50 instances) indicating good generalization capability of the
network.

3.2 Genetic optimization with surrogate model

Using the surrogate model approach it was possible to achieve solutions with equivalent properties to the
target solution. Figure 5 shows an example taking as target values the homogenization results for the unit cell
labeled as ”Database” in the Figure.
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Figure 4. Regression for each variable considering the best network

GA Database
target

predicted

(surrogate model)
FEM

C11 27.9832 23.1122 28.6080

C22 23.8461 21.8166 29.5534

C12 7.3778 16.6494 8.9281

C44 11.8806 12.3598 6.8513

Figure 5. Results obtained with a genetic algorithm using the neural network as a surrogate model to calculate the
objective function
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output thresholded database
target

predicted

(surrogate model)
FEM

C11 42.38795 42.33645 50.00771

C22 43.16202 47.62848 51.07503

C12 14.83079 15.37112 12.84709

C44 13.46677 14.48823 14.16557

target
predicted

(surrogate model)
FEM

C11 12.95064 11.60152 12.52517

C22 13.30584 9.054743 11.48039

C12 1.350524 3.653295 0.954938

C44 0.445987 4.690858 0.466798

Figure 6. Results obtained with the reverse network

Table 1. Time performance comparison, all times are shown in seconds (s)

homogenization prediction (surrogate NN) GA reverse NN

60 0.017796 114.109689 1.890407

3.3 Reverse neural network

Figure 6 shows the results obtained with the neural network trained to do the reverse task. The network output
is not discrete as therefore the a threshold is applied to the output in order to create a binary image corresponding
to the unit cell.

3.4 Discussion

With respect to the surrogate model, the neural network was able to output the properties of some given
structure. Thus, it was feasible to employ this network as a surrogate model for optimization. However it should
be noted that the solution by the algorithm is very different in terms of geometry although the mechanical properties
are very similar. This is likely due to the fact that the properties of cellular materials are mostly dependent on their
density [12]. Also, if the density is higher, the material distribution can be more homogeneous leading to higher
isotropy, so the values of C44 will be closer to the target value. Further validation of the optimization is required
with lower density geometries.

Regarding the reverse network, since this network learns from the dataset, the solutions are much closer to
the target value both in terms of the elastic tensor as well as the mechanical properties. Thus, the reverse approach
is likely to lead to more manufacturable results than the surrogate model optimization approach.

Finally, it is relevant to mention the significant savings in computational cost provided by neural networks.
Table 1 shows a time comparison of the several steps in this work. Taking as reference the homogenization step,
it will take on average 60s while a prediction with the surrogate model neural network takes approximately 0.02s.
Then, in order to calculate a new geometry fitted to some elastic tensor, the genetic algorithm takes approximately
114s. The reverse neural network to predict a new geometry takes 1.89s which is significantly less than the genetic
algorithm.

4 Conclusions

This work suggested a methodology to create 2D unit cells which fit some given elastic properties. In the field
of tissue engineering, the presented methodology should aid in the minimization of the difference in mechanical
properties between the scaffold and the bone in its surroundings. This difference leads to stress shielding and
consequently bone decay. By taking as input the desired elastic properties as shown in Figure 7, neural networks
can aid in the design of patient-specific implants.
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Figure 7. Optimal scaffold design
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