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Abstract. The utilization of fiber-reinforced materials has experienced a significant surge due to their notable
advantages, particularly their high strength-to-mass ratio. As a result, new additive manufacturing technologies
have emerged to accommodate these materials, offering capabilities for tailoring fiber orientation and creating
opportunities for optimization techniques. Consequently, a growing body of literature has focused on optimizing
fiber orientation. However, a crucial consideration in this context is the stress yield criteria. This study addresses
the Topology Optimization problem by minimizing the structure volume while considering local stress constraints
using Tsai-Wu yield criteria. To achieve this, we use the method NDFO-adapt, which determines the material
distribution and fiber orientation. Our approach optimizes the penalization fields, material distribution, and fiber
angles. Additionally, we extend a similar approach to optimize the threshold projection parameter. By adopting
this strategy, we modify the solution space, enabling the exploration of previously unattainable local minima. To
handle the local stress constraint, we employ the Augmented Lagrangian method. The efficacy of the proposed
method is demonstrated through numerical examples.

Keywords: Topology Optimization, Fiber-reinforced materials, Local stress constraints, Tsai-Wu, Multiple design
variables

1 Introduction

The increasing use of fiber-reinforced materials, known for their high strength-to-mass ratio, has led to the
development of additive manufacturing techniques (Palanikumar et al. [1], Ning et al. [2], Quan et al. [3], Hou
et al. [4], Dickson et al. [5]. For this reason, plenty of works are being developed in the literature to solve the
problem of optimizing the fiber orientation in this material. Some works employ heuristic algorithms for optimizing
fiber orientation, offering potential ”global minima” solutions without extensive gradient calculations. Examples
include Kim et al. [6] and António [7]. However, the efficiency of non-gradient methods for complex multi-
variable problems is debated Sigmund [8]. Another avenue involves the homogenization method Allaire et al. [9],
building on Pedersen [10] work on minimizing compliance through principal strain tensor directions. Gradient-
based techniques, seen in works like Soares et al. [11] and Luo and Gea [12], treat angles as direct design variables,
leading to challenges of local minima and sensitivity to initial assumptions. Stegmann and Lund [13] introduced
an interpolation material model, later extended by Bruyneel [14] and Gao et al. [15]. Challenges arise with an
increase in candidates leading to more design variables. Kiyono et al. [16] addressed this with normal distribution
functions, while Salas et al. [17] used Taylor series approximations. Salas et al. [18] hybridized these techniques.
Stress constraints are often overlooked despite these advancements, even in isotropic cases. This study introduces
NDFO-adap, optimizing both fiber orientation and material distribution in fiber-reinforced structures using the
well-established interpolation material model SIMP [19]. The innovative aspect lies in an adaptive penalization
field optimized alongside material distribution and fiber angle parameters, addressing the balance between fiber
optimization and stress constraints considering Tsai-Wu yield criteria.
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2 Theoretical formulation

This work considers the hypothesis of small displacements, strain, and rotation: linear elastic setting. The
field equation of solid mechanics represents the forward problem associated with the Topology Optimization prob-
lem in its weak form (Zienkiewicz and Taylor [20], Bendsoe and Sigmund [21]):

a(u,v) = L(v) (1)

where the Energy bilinear form and Load linear form are defined as:

a(u,v) =

∫
Ω

σij(u)ϵij(v)dΩ (2)

The ith components of the body force and the surface force are defined by bi and ti, while vi is the ith
component of the virtual displacement vector. The components ij of the Cauchy stress tensor and the linear strain
tensor, σij and ϵij , respectively, are calculated as:

σij = Cijkl ϵjk(u) (3)

ϵij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(4)

The Cijkl represents the ijkl component of the constitutive tensor C, which is calculated by using the con-
stitutive tensor for an orthotropic material Q, the Reuter matrix R and the transformation tensor T, as defined by
Kaw [22]:

C = T−1 Q R T R−1 (5)

The interpolation material model is the well-known SIMP Bendsøe [19], where a pseudo-density variable
multiplies the constitutive tensor, that is:

σij =
(
ρmin + (1− ρmin) ˜̃ρp̃

)
Cijkl ϵkl(u) (6)

where ρmin is a minimal value for the pseudo-density ρ, which varies from 0 to 1, ˜̃ρ is the physical pseudo-densities
field and p̃ is the filtered penalization for SIMP material model. The penalization p is also considered a design
variable optimized with the pseudo-densities.

The optimized fiber angle orientation is calculated using the interpolation material model NDFO-adap (da Silva
et al. [23]). The penalization parameter of the NDFO-adap, named pn, is optimized together with the other design
variable. The physical fiber angle ˜̃

ϕ is defined by using the weighted sum:

˜̃
ϕ =

Nc∑
i=1

wi ϕ
c
i (7)

where Nc is the number candidate angles, ϕc are the candidate angles, and w is the weight function that defined
as:

wi =
ŵi

Nc∑
j=1

ŵj

(8)

The normal distribution function ŵ is defined by:

ŵi = exp

(
(ϕ̃− ϕc

i )
2

2 p̃2n

)
(9)

where ϕ̃ represents the field of filtered fiber angles, and p̃n is the filtered field of penalization for the NDFO-adap
interpolation material model.

To help the pseudo-densities reach the values of 0 and 1, which represent void and material in the domain,
we use the threshold projection proposed by Xu et al. [24] in the tanh form:
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˜̃ρ =
tanh

(
β̃ η + tanh(β̃(ρ̃− η)

)
tanh

(
β̃ η
)
+ tanh

(
β̃(1− η)

) (10)

where β̃ is the filtered projection field and η is an inflection parameter.
The Topology Optimization problem has as its objective to minimize the structure volume considering com-

pliance and stress constraints:

min
ρ,ϕ,p,pn,β

J =

∫
Ω

˜̃ρ dΩ

V

such that F = a(u,v, ˜̃ρ,
˜̃
ϕ)− L(v) = 0

G
(e)
1 = f (e)

σ σ
(e)
tw

((
f (e)
σ σ

(e)
tw

)2
+ 1

)
≤ 0

G2 =

(
c(u, ˜̃ρ,

˜̃
ϕ)

αc cfull(u, ϕprinc)
− 1

)( c(u, ˜̃ρ,
˜̃
ϕ)

αc cfull(u, ϕprinc)
− 1

)2

+ 1

 ≤ 0

ρmin ≤ ρlb(g, ggl) ≤ ρ ≤ ρub(g, ggl) ≤ 1

ϕmin ≤ ϕ ≤ ϕmax

pmin(g) ≤ p ≤ pmax

pnmin ≤ pnlb
≤ pn ≤ pnmax

βmin(g) ≤ β ≤ βmax

(11)

where J represents the volume fraction of the structure, F is the state equation, G(e)
1 is the local stress constraint,

G2 is the compliance constraint, and all others are box constraints.
The term σtw represents the left-hand side of the Tsai-Wu yield criterion:

H1 σ1 + H2 σ2 + H6 σ6 + H11 σ
2
1 + H22 σ

2
2 + H66 σ

2
6 + 2H12 σ1 σ2 − 1 < 0 (12)

where σi, i = 1, 2, 6, are components of the Cauchy stress tensor in the fiber directions, and the H terms are
calculated as a function of the ultimate longitudinal tensile strength (σT

1 )ult, the ultimate longitudinal compressive
strength (σC

1 )ult, the ultimate transverse tensile strength (σT
2 )ult, the ultimate transverse compressive strength

(σC
2 )ult, and the ultimate in-plane shear strength, according to [22]:

Hα =
1

(σT
α )ult

− 1

(σC
α )ult

α = 1, 2 (13a)

Hαα =
1

(σT
α )ult (σ

C
α )ult

α = 1, 2 (13b)

H6 = 0 (13c)

H66 =
1

(σ6)2ult
(13d)

H12 = −1

2

√
1

(σT
1 )ult(σ

C
1 )ult(σ

T
2 )ult(σ

C
2 )ult

(13e)

The compliance constraint is a comparison between the compliance of the optimized structure in the current
iteration c with the compliance full cfull, which is the compliance calculated considering that the pseudo-density
ρ is equal to one in the whole structure and that the fiber orientation is equal to principal stress direction:

c =

∫
Ω

σij(u, ˜̃ρ,
˜̃
ϕ)

∂ui

∂xj
dΩ (14)

cfull(u, ϕprinc) =

∫
Ω

σij(u, ϕprinc)
∂ui

∂xj
dΩ (15)

The problem is implemented using the Augmented Lagrangian method in FEniCS project software. The
sensitivities are calculated using an automatic differentiation software named Dolfin-Adjoint, and the optimization
is performed using an L-BFGS-B algorithm implemented in the SciPy library. The optimization flowchart is
presented in the Fig. 1
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Figure 1. Topology optimization flowchart

3 Results

Two results for the L-bracket represented by Fig. 2 are presented. The material considered in the simulations
is graphite/epoxy. The material properties for a composite with a fiber volume fraction of 0.45 are shown in the in
section 3 [22].

Results obtained using two different values of αc, the variable used in the compliance constraint, are presented
in Fig. 3. Fig. 3a and Fig. 3b show the optimized fiber orientation for αc = 4 and αc = 5, respectively. The objective
function J for the case where αc is equal to 4 is approximately 0.41, while for the case where αc is 5, the objective
function is equal to 0.39. It is expected that the volume fraction will be smaller for smaller compliance as well,
considering that more material increases the structure’s stiffness. For both cases, it is possible to observe stress
relief in the corner of the structure, as highlighted in Detail 1. Also, for both results, we observe that the fibers
follow the path created by the material distribution, ensuring fiber continuity. Fiber discontinuities can be observed

0.
6 

l

l

0.4 l

l

t

Figure 2. L-bracket domain
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E1 E2 G12 ν12 (σT
1 )ult (σC

1 ) (σT
2 )ult (σC

2 )ult (σ6)ult

181 GPa 10.3 GPa 7.17 GPa 0.28 1500 MPa 1500 MPa 40 MPa 246 MPa 72 MPa

in regions with two or more members, as shown in Details 2 and 3. As can be observed in Figs. 3c and 3d, the
maximum values of stress constraints are in an order of 1 · 10−2, that is, very close to zero.

4 Conclusions

In this study, we successfully implemented a topology optimization algorithm that effectively optimized
fields of fiber orientation, material distribution, and penalizations, considering the Tsai-Wu yield criterion for
stress constraint and a compliance constraint. The final fiber distribution tends to follow the path formed by the
material distribution, with exceptions in places with two or more members. Both examples present stress relief
in the corner of the structure. The stress constraint is respected in the structure, but some feel elements where its
value is in order of 1 · 10−2, very close to 0.
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Detail 1

Detail 2

Detail 3

(a) Fiber orientation and material distribution for a
result with αc = 4

Detail 1

Detail 2
Detail 3

(b) Fiber orientation and material distribution for a
result with αc = 5

(c) Stress constraint field for a result with αc = 4 (d) Stress constraint field for a result with αc = 5

Figure 3. Fibers and stress constraints fields for two different values of αc
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